A History of Science-1 [72]
to dwell more at length on this point in a succeeding chapter. It has even been contended by some critics that it was the adverse conviction of the Peripatetic philosopher which, more than any other single influence, tended to retard the progress of the true doctrine regarding the mechanism of the heavens. Aristotle accepted the sphericity of the earth, and that doctrine became a commonplace of scientific knowledge, and so continued throughout classical antiquity. But Aristotle rejected the doctrine of the earth's motion, and that doctrine, though promulgated actively by a few contemporaries and immediate successors of the Stagirite, was then doomed to sink out of view for more than a thousand years. If it be a correct assumption that the influence of Aristotle was, in a large measure, responsible for this result, then we shall perhaps not be far astray in assuming that the great founder of the Peripatetic school was, on the whole, more instrumental in retarding the progress of astronomical science that any other one man that ever lived. The field of science in which Aristotle was pre-eminently a pathfinder is zoology. His writings on natural history have largely been preserved, and they constitute by far the most important contribution to the subject that has come down to us from antiquity. They show us that Aristotle had gained possession of the widest range of facts regarding the animal kingdom, and, what is far more important, had attempted to classify these facts. In so doing he became the founder of systematic zoology. Aristotle's classification of the animal kingdom was known and studied throughout the Middle Ages, and, in fact, remained in vogue until superseded by that of Cuvier in the nineteenth century. It is not to be supposed that all the terms of Aristotle's classification originated with him. Some of the divisions are too patent to have escaped the observation of his predecessors. Thus, for example, the distinction between birds and fishes as separate classes of animals is so obvious that it must appeal to a child or to a savage. But the efforts of Aristotle extended, as we shall see, to less patent generalizations. At the very outset, his grand division of the animal kingdom into blood-bearing and bloodless animals implies a very broad and philosophical conception of the entire animal kingdom. The modern physiologist does not accept the classification, inasmuch as it is now known that colorless fluids perform the functions of blood for all the lower organisms. But the fact remains that Aristotle's grand divisions correspond to the grand divisions of the Lamarckian system--vertebrates and invertebrates-- which every one now accepts. Aristotle, as we have said, based his classification upon observation of the blood; Lamarck was guided by a study of the skeleton. The fact that such diverse points of view could direct the observer towards the same result gives, inferentially, a suggestive lesson in what the modern physiologist calls the homologies of parts of the organism. Aristotle divides his so-called blood-bearing animals into five classes: (1) Four-footed animals that bring forth their young alive; (2) birds; (3) egg-laying four- footed animals (including what modern naturalists call reptiles and amphibians); (4) whales and their allies; (5) fishes. This classification, as will be observed, is not so very far afield from the modern divisions into mammals, birds, reptiles, amphibians, and fishes. That Aristotle should have recognized the fundamental distinction between fishes and the fish- like whales, dolphins, and porpoises proves the far from superficial character of his studies. Aristotle knew that these animals breathe by means of lungs and that they produce living young. He recognized, therefore, their affinity with his first class of animals, even if he did not, like the modern naturalist, consider these affinities close enough to justify bringing the two types together into a single class. The bloodless animals were also divided by Aristotle into five classes--namely: (1) Cephalopoda (the octopus,