Online Book Reader

Home Category

A History of Science-2 [5]

By Root 1565 0
two degrees. Selecting a level plain in Mesopotamia for the experiment, one party of the surveyors progressed northward, another party southward, from a given point to the distance of one degree of arc, as determined by astronomical observations. The result found was fifty-six miles for the northern degree, and fifty-six and two-third miles for the southern. Unfortunately, we do not know the precise length of the mile in question, and therefore cannot be assured as to the accuracy of the measurement. It is interesting to note, however, that the two degrees were found of unequal lengths, suggesting that the earth is not a perfect sphere--a suggestion the validity of which was not to be put to the test of conclusive measurements until about the close of the eighteenth century. The Arab measurement was made in the time of Caliph Abdallah al-Mamun, the son of the famous Harun-al-Rashid. Both father and son were famous for their interest in science. Harun-al-Rashid was, it will be recalled, the friend of Charlemagne. It is said that he sent that ruler, as a token of friendship, a marvellous clock which let fall a metal ball to mark the hours. This mechanism, which is alleged to have excited great wonder in the West, furnishes yet another instance of Arabian practicality. Perhaps the greatest of the Arabian astronomers was Mohammed ben Jabir Albategnius, or El-batani, who was born at Batan, in Mesopotamia, about the year 850 A.D., and died in 929. Albategnius was a student of the Ptolemaic astronomy, but he was also a practical observer. He made the important discovery of the motion of the solar apogee. That is to say, he found that the position of the sun among the stars, at the time of its greatest distance from the earth, was not what it had been in the time of Ptolemy. The Greek astronomer placed the sun in longitude 65 degrees, but Albategnius found it in longitude 82 degrees, a distance too great to be accounted for by inaccuracy of measurement. The modern inference from this observation is that the solar system is moving through space; but of course this inference could not well be drawn while the earth was regarded as the fixed centre of the universe. In the eleventh century another Arabian discoverer, Arzachel, observing the sun to be less advanced than Albategnius had found it, inferred incorrectly that the sun had receded in the mean time. The modern explanation of this observation is that the measurement of Albategnius was somewhat in error, since we know that the sun's motion is steadily progressive. Arzachel, however, accepting the measurement of his predecessor, drew the false inference of an oscillatory motion of the stars, the idea of the motion of the solar system not being permissible. This assumed phenomenon, which really has no existence in point of fact, was named the "trepidation of the fixed stars," and was for centuries accepted as an actual phenomenon. Arzachel explained this supposed phenomenon by assuming that the equinoctial points, or the points of intersection of the equator and the ecliptic, revolve in circles of eight degrees' radius. The first points of Aries and Libra were supposed to describe the circumference of these circles in about eight hundred years. All of which illustrates how a difficult and false explanation may take the place of a simple and correct one. The observations of later generations have shown conclusively that the sun's shift of position is regularly progressive, hence that there is no "trepidation" of the stars and no revolution of the equinoctial points. If the Arabs were wrong as regards this supposed motion of the fixed stars, they made at least one correct observation as to the inequality of motion of the moon. Two inequalities of the motion of this body were already known. A third, called the moon's variation, was discovered by an Arabian astronomer who lived at Cairo and observed at Bagdad in 975, and who bore the formidable name of Mohammed Aboul Wefaal-Bouzdjani. The inequality of motion in question, in virtue of which the moon moves quickest when she is at new
Return Main Page Previous Page Next Page

®Online Book Reader