A History of Science-2 [88]
computation was founded on the hypothesis of the proportionality of the sines of incidence and refraction, which though by my own experience I could not imagine to be so erroneous as to make that angle but 31', which in reality was 2 degrees 49', yet my curiosity caused me again to make my prism. And having placed it at my window, as before, I observed that by turning it a little about its axis to and fro, so as to vary its obliquity to the light more than an angle of 4 degrees or 5 degrees, the colors were not thereby sensibly translated from their place on the wall, and consequently by that variation of incidence the quantity of refraction was not sensibly varied. By this experiment, therefore, as well as by the former computation, it was evident that the difference of the incidence of rays flowing from divers parts of the sun could not make them after decussation diverge at a sensibly greater angle than that at which they before converged; which being, at most, but about 31' or 32', there still remained some other cause to be found out, from whence it could be 2 degrees 49'." All this caused Newton to suspect that the rays, after their trajection through the prism, moved in curved rather than in straight lines, thus tending to be cast upon the wall at different places according to the amount of this curve. His suspicions were increased, also, by happening to recall that a tennis-ball sometimes describes such a curve when "cut" by a tennis-racket striking the ball obliquely. "For a circular as well as a progressive motion being communicated to it by the stroke," he says, "its parts on that side where the motions conspire must press and beat the contiguous air more violently than on the other, and there excite a reluctancy and reaction of the air proportionately greater. And for the same reason, if the rays of light should possibly be globular bodies, and by their oblique passage out of one medium into another acquire a circulating motion, they ought to feel the greater resistance from the ambient ether on that side where the motions conspire, and thence be continually bowed to the other. But notwithstanding this plausible ground of suspicion, when I came to examine it I could observe no such curvity in them. And, besides (which was enough for my purpose), I observed that the difference 'twixt the length of the image and diameter of the hole through which the light was transmitted was proportionable to their distance. "The gradual removal of these suspicions at length led me to the experimentum crucis, which was this: I took two boards, and, placing one of them close behind the prism at the window, so that the light must pass through a small hole, made in it for the purpose, and fall on the other board, which I placed at about twelve feet distance, having first made a small hole in it also, for some of the incident light to pass through. Then I placed another prism behind this second board, so that the light trajected through both the boards might pass through that also, and be again refracted before it arrived at the wall. This done, I took the first prism in my hands and turned it to and fro slowly about its axis, so much as to make the several parts of the image, cast on the second board, successively pass through the hole in it, that I might observe to what places on the wall the second prism would refract them. And I saw by the variation of these places that the light, tending to that end of the image towards which the refraction of the first prism was made, did in the second prism suffer a refraction considerably greater than the light tending to the other end. And so the true cause of the length of that image was detected to be no other than that LIGHT consists of RAYS DIFFERENTLY REFRANGIBLE, which, without any respect to a difference in their incidence, were, according to their degrees of refrangibility, transmitted towards divers parts of the wall."[1]
THE NATURE OF COLOR Having thus proved the composition of light, Newton took up an exhaustive discussion as to colors, which cannot be entered into at length
THE NATURE OF COLOR Having thus proved the composition of light, Newton took up an exhaustive discussion as to colors, which cannot be entered into at length