A History of Science-3 [104]
to each other, as shown by mechanics, a constant relation.
'Gravity being regarded as the cause of the falling of bodies, a gravitating force is spoken of; and thus the ideas of PROPERTY and of FORCE are confounded with each other. Precisely that which is the essential attribute of every force--that is, the UNION of indestructibility with convertibility--is wanting in every property: between a property and a force, between gravity and motion, it is therefore impossible to establish the equation required for a rightly conceived causal relation. If gravity be called a force, a cause is supposed which produces effects without itself diminishing, and incorrect conceptions of the causal connections of things are thereby fostered. In order that a body may fall, it is just as necessary that it be lifted up as that it should be heavy or possess gravity. The fall of bodies, therefore, ought not to be ascribed to their gravity alone. The problem of mechanics is to develop the equations which subsist between falling force and motion, motion and falling force, and between different motions. Here is a case in point: The magnitude of the falling force v is directly proportional (the earth's radius being assumed--oo) to the magnitude of the mass m, and the height d, to which it is raised--that is, v = md. If the height d = l, to which the mass m is raised, is transformed into the final velocity c = l of this mass, we have also v = mc; but from the known relations existing between d and c, it results that, for other values of d or of c, the measure of the force v is mc squared; accordingly v = md = mcsquared. The law of the conservation of vis viva is thus found to be based on the general law of the indestructibility of causes.
"In many cases we see motion cease without having caused another motion or the lifting of a weight. But a force once in existence cannot be annihilated--it can only change its form. And the question therefore arises, what other forms is force, which we have become acquainted with as falling force and motion, capable of assuming? Experience alone can lead us to a conclusion on this point. That we may experiment to advantage, we must select implements which, besides causing a real cessation of motion, are as little as possible altered by the objects to be examined. For example, if we rub together two metal plates, we see motion disappear, and heat, on the other hand, make its appearance, and there remains to be determined only whether MOTION is the cause of heat. In order to reach a decision on this point, we must discuss the question whether, in the numberless cases in which the expenditure of motion is accompanied by the appearance of heat, the motion has not some other effect than the production of heat, and the heat some other cause than the motion.
"A serious attempt to ascertain the effects of ceasing motion has never been made. Without wishing to exclude a priori the hypothesis which it may be possible to establish, therefore, we observe only that, as a rule, this effect cannot be supposed to be an alteration in the state of aggregation of the moved (that is, rubbing, etc.) bodies. If we assume that a certain quantity of motion v is expended in the conversion of a rubbing substance m into n, we must then have m + v - n, and n = m + v; and when n is reconverted into m, v must appear again in some form or other.
By the friction of two metallic plates continued for a very long time, we can gradually cause the cessation of an immense quantity of movement; but would it ever occur to us to look for even the smallest trace of the force which has disappeared in the metallic dust that we could collect, and to try to regain it thence? We repeat, the motion cannot have been annihilated; and contrary, or positive and negative, motions cannot be regarded as = o any more than contrary motions can come out of nothing, or a weight can raise itself.
"Without the recognition of a causal relation between motion and heat, it is just as difficult to explain the production of heat as it is to give any account of the
'Gravity being regarded as the cause of the falling of bodies, a gravitating force is spoken of; and thus the ideas of PROPERTY and of FORCE are confounded with each other. Precisely that which is the essential attribute of every force--that is, the UNION of indestructibility with convertibility--is wanting in every property: between a property and a force, between gravity and motion, it is therefore impossible to establish the equation required for a rightly conceived causal relation. If gravity be called a force, a cause is supposed which produces effects without itself diminishing, and incorrect conceptions of the causal connections of things are thereby fostered. In order that a body may fall, it is just as necessary that it be lifted up as that it should be heavy or possess gravity. The fall of bodies, therefore, ought not to be ascribed to their gravity alone. The problem of mechanics is to develop the equations which subsist between falling force and motion, motion and falling force, and between different motions. Here is a case in point: The magnitude of the falling force v is directly proportional (the earth's radius being assumed--oo) to the magnitude of the mass m, and the height d, to which it is raised--that is, v = md. If the height d = l, to which the mass m is raised, is transformed into the final velocity c = l of this mass, we have also v = mc; but from the known relations existing between d and c, it results that, for other values of d or of c, the measure of the force v is mc squared; accordingly v = md = mcsquared. The law of the conservation of vis viva is thus found to be based on the general law of the indestructibility of causes.
"In many cases we see motion cease without having caused another motion or the lifting of a weight. But a force once in existence cannot be annihilated--it can only change its form. And the question therefore arises, what other forms is force, which we have become acquainted with as falling force and motion, capable of assuming? Experience alone can lead us to a conclusion on this point. That we may experiment to advantage, we must select implements which, besides causing a real cessation of motion, are as little as possible altered by the objects to be examined. For example, if we rub together two metal plates, we see motion disappear, and heat, on the other hand, make its appearance, and there remains to be determined only whether MOTION is the cause of heat. In order to reach a decision on this point, we must discuss the question whether, in the numberless cases in which the expenditure of motion is accompanied by the appearance of heat, the motion has not some other effect than the production of heat, and the heat some other cause than the motion.
"A serious attempt to ascertain the effects of ceasing motion has never been made. Without wishing to exclude a priori the hypothesis which it may be possible to establish, therefore, we observe only that, as a rule, this effect cannot be supposed to be an alteration in the state of aggregation of the moved (that is, rubbing, etc.) bodies. If we assume that a certain quantity of motion v is expended in the conversion of a rubbing substance m into n, we must then have m + v - n, and n = m + v; and when n is reconverted into m, v must appear again in some form or other.
By the friction of two metallic plates continued for a very long time, we can gradually cause the cessation of an immense quantity of movement; but would it ever occur to us to look for even the smallest trace of the force which has disappeared in the metallic dust that we could collect, and to try to regain it thence? We repeat, the motion cannot have been annihilated; and contrary, or positive and negative, motions cannot be regarded as = o any more than contrary motions can come out of nothing, or a weight can raise itself.
"Without the recognition of a causal relation between motion and heat, it is just as difficult to explain the production of heat as it is to give any account of the