Online Book Reader

Home Category

A History of Science-3 [87]

By Root 1606 0
an earlier date, but it was not until 1801 that he hit upon the idea which enabled him to bring it to anything approaching a demonstration. It was while pondering over the familiar but puzzling phenomena of colored rings into which white light is broken when reflected from thin films--Newton's rings, so called--that an explanation occurred to him which at once put the entire undulatory theory on a new footing. With that sagacity of insight which we call genius, he saw of a sudden that the phenomena could be explained by supposing that when rays of light fall on a thin glass, part of the rays being reflected from the upper surface, other rays, reflected from the lower surface, might be so retarded in their course through the glass that the two sets would interfere with one another, the forward pulsation of one ray corresponding to the backward pulsation of another, thus quite neutralizing the effect. Some of the component pulsations of the light being thus effaced by mutual interference, the remaining rays would no longer give the optical effect of white light; hence the puzzling colors.

Here is Young's exposition of the subject:

Of the Colors of Thin Plates

"When a beam of light falls upon two refracting surfaces, the partial reflections coincide perfectly in direction; and in this case the interval of retardation taken between the surfaces is to their radius as twice the cosine of the angle of refraction to the radius.

"Let the medium between the surfaces be rarer than the surrounding mediums; then the impulse reflected at the second surface, meeting a subsequent undulation at the first, will render the particles of the rarer medium capable of wholly stopping the motion of the denser and destroying the reflection, while they themselves will be more strongly propelled than if they had been at rest, and the transmitted light will be increased. So that the colors by reflection will be destroyed, and those by transmission rendered more vivid, when the double thickness or intervals of retardation are any multiples of the whole breadth of the undulations; and at intermediate thicknesses the effects will be reversed according to the Newtonian observation.

"If the same proportions be found to hold good with respect to thin plates of a denser medium, which is, indeed, not improbable, it will be necessary to adopt the connected demonstrations of Prop. IV., but, at any rate, if a thin plate be interposed between a rarer and a denser medium, the colors by reflection and transmission may be expected to change places.


Of the Colors of Thick Plates

"When a beam of light passes through a refracting surface, especially if imperfectly polished, a portion of it is irregularly scattered, and makes the surface visible in all directions, but most conspicuously in directions not far distant from that of the light itself; and if a reflecting surface be placed parallel to the refracting surface, this scattered light, as well as the principal beam, will be reflected, and there will be also a new dissipation of light, at the return of the beam through the refracting surface. These two portions of scattered light will coincide in direction; and if the surfaces be of such a form as to collect the similar effects, will exhibit rings of colors. The interval of retardation is here the difference between the paths of the principal beam and of the scattered light between the two surfaces; of course, wherever the inclination of the scattered light is equal to that of the beam, although in different planes, the interval will vanish and all the undulations will conspire. At other inclinations, the interval will be the difference of the secants from the secant of the inclination, or angle of refraction of the principal beam. From these causes, all the colors of concave mirrors observed by Newton and others are necessary consequences; and it appears that their production, though somewhat similar, is by no means as Newton imagined, identical with the production of thin plates."[2]


By following up this clew with mathematical precision,
Return Main Page Previous Page Next Page

®Online Book Reader