Online Book Reader

Home Category

A History of Science-4 [11]

By Root 1612 0
Sweden honored and rewarded Scheele and Bergman for their efforts; England received the intellectuality of Cavendish with less appreciation than the Continent, and a fanatical mob drove Priestley out of the country; while France, by sending Lavoisier to the guillotine, demonstrated how dangerous it was, at that time at least, for an intelligent Frenchman to serve his fellowman and his country well.

"The revolution brought about by Lavoisier in science," says Hoefer, "coincides by a singular act of destiny with another revolution, much greater indeed, going on then in the political and social world. Both happened on the same soil, at the same epoch, among the same people; and both marked the commencement of a new era in their respective spheres."[8]

Lavoisier was born in Paris, and being the son of an opulent family, was educated under the instruction of the best teachers of the day. With Lacaille he studied mathematics and astronomy; with Jussieu, botany; and, finally, chemistry under Rouelle. His first work of importance was a paper on the practical illumination of the streets of Paris, for which a prize had been offered by M. de Sartine, the chief of police. This prize was not awarded to Lavoisier, but his suggestions were of such importance that the king directed that a gold medal be bestowed upon the young author at the public sitting of the Academy in April, 1776. Two years later, at the age of thirty-five, Lavoisier was admitted a member of the Academy.

In this same year he began to devote himself almost exclusively to chemical inquiries, and established a laboratory in his home, fitted with all manner of costly apparatus and chemicals. Here he was in constant communication with the great men of science of Paris, to all of whom his doors were thrown open. One of his first undertakings in this laboratory was to demonstrate that water could not be converted into earth by repeated distillations, as was generally advocated; and to show also that there was no foundation to the existing belief that it was possible to convert water into a gas so "elastic" as to pass through the pores of a vessel. He demonstrated the fallaciousness of both these theories in 1768-1769 by elaborate experiments, a single investigation of this series occupying one hundred and one days.

In 1771 he gave the first blow to the phlogiston theory by his experiments on the calcination of metals. It will be recalled that one basis for the belief in phlogiston was the fact that when a metal was calcined it was converted into an ash, giving up its "phlogiston" in the process. To restore the metal, it was necessary to add some substance such as wheat or charcoal to the ash. Lavoisier, in examining this process of restoration, found that there was always evolved a great quantity of "air," which he supposed to be "fixed air" or carbonic acid--the same that escapes in effervescence of alkalies and calcareous earths, and in the fermentation of liquors. He then examined the process of calcination, whereby the phlogiston of the metal was supposed to have been drawn off. But far from finding that phlogiston or any other substance had been driven off, he found that something had been taken on: that the metal "absorbed air," and that the increased weight of the metal corresponded to the amount of air "absorbed." Meanwhile he was within grasp of two great discoveries, that of oxygen and of the composition of the air, which Priestley made some two years later.

The next important inquiry of this great Frenchman was as to the composition of diamonds. With the great lens of Tschirnhausen belonging to the Academy he succeeded in burning up several diamonds, regardless of expense, which, thanks to his inheritance, he could ignore. In this process he found that a gas was given off which precipitated lime from water, and proved to be carbonic acid. Observing this, and experimenting with other substances known to give off carbonic acid in the same manner, he was evidently impressed with the now well-known fact that diamond and charcoal are chemically the
Return Main Page Previous Page Next Page

®Online Book Reader