A History of Science-4 [39]
headway towards such a system until they should gain a wider understanding of the organisms with which they had to deal through comprehensive studies of anatomy. Such studies of individual forms in their relations to the entire scale of organic beings were pursued in these last decades of the century, but though two or three most important generalizations were achieved (notably Kaspar Wolff's conception of the cell as the basis of organic life, and Goethe's all-important doctrine of metamorphosis of parts), yet, as a whole, the work of the anatomists of the period was germinative rather than fruit-bearing. Bichat's volumes, telling of the recognition of the fundamental tissues of the body, did not begin to appear till the last year of the century. The announcement by Cuvier of the doctrine of correlation of parts bears the same date, but in general the studies of this great naturalist, which in due time were to stamp him as the successor of Linnaeus, were as yet only fairly begun.
V. ANATOMY AND PHYSIOLOGY IN THE NINETEENTH CENTURY
CUVIER AND THE CORRELATION OF PARTS
We have seen that the focal points of the physiological world towards the close of the eighteenth century were Italy and England, but when Spallanzani and Hunter passed away the scene shifted to France. The time was peculiarly propitious, as the recent advances in many lines of science had brought fresh data for the student of animal life which were in need of classification, and, as several minds capable of such a task were in the field, it was natural that great generalizations should have come to be quite the fashion. Thus it was that Cuvier came forward with a brand-new classification of the animal kingdom, establishing four great types of being, which he called vertebrates, mollusks, articulates, and radiates. Lamarck had shortly before established the broad distinction between animals with and those without a backbone; Cuvier's Classification divided the latter--the invertebrates--into three minor groups. And this division, familiar ever since to all students of zoology, has only in very recent years been supplanted, and then not by revolution, but by a further division, which the elaborate recent studies of lower forms of life seemed to make desirable.
In the course of those studies of comparative anatomy which led to his new classification, Cuvier's attention was called constantly to the peculiar co-ordination of parts in each individual organism. Thus an animal with sharp talons for catching living prey--as a member of the cat tribe--has also sharp teeth, adapted for tearing up the flesh of its victim, and a particular type of stomach, quite different from that of herbivorous creatures. This adaptation of all the parts of the animal to one another extends to the most diverse parts of the organism, and enables the skilled anatomist, from the observation of a single typical part, to draw inferences as to the structure of the entire animal--a fact which was of vast aid to Cuvier in his studies of paleontology. It did not enable Cuvier, nor does it enable any one else, to reconstruct fully the extinct animal from observation of a single bone, as has sometimes been asserted, but what it really does establish, in the hands of an expert, is sufficiently astonishing.
"While the study of the fossil remains of the greater quadrupeds is more satisfactory," he writes, "by the clear results which it affords, than that of the remains of other animals found in a fossil state, it is also complicated with greater and more numerous difficulties. Fossil shells are usually found quite entire, and retaining all the characters requisite for comparing them with the specimens contained in collections of natural history, or represented in the works of naturalists. Even the skeletons of fishes are found more or less entire, so that the general forms of their bodies can, for the most part, be ascertained, and usually, at least, their generic and specific characters are determinable, as these are mostly drawn from their solid parts. In quadrupeds, on the contrary,
V. ANATOMY AND PHYSIOLOGY IN THE NINETEENTH CENTURY
CUVIER AND THE CORRELATION OF PARTS
We have seen that the focal points of the physiological world towards the close of the eighteenth century were Italy and England, but when Spallanzani and Hunter passed away the scene shifted to France. The time was peculiarly propitious, as the recent advances in many lines of science had brought fresh data for the student of animal life which were in need of classification, and, as several minds capable of such a task were in the field, it was natural that great generalizations should have come to be quite the fashion. Thus it was that Cuvier came forward with a brand-new classification of the animal kingdom, establishing four great types of being, which he called vertebrates, mollusks, articulates, and radiates. Lamarck had shortly before established the broad distinction between animals with and those without a backbone; Cuvier's Classification divided the latter--the invertebrates--into three minor groups. And this division, familiar ever since to all students of zoology, has only in very recent years been supplanted, and then not by revolution, but by a further division, which the elaborate recent studies of lower forms of life seemed to make desirable.
In the course of those studies of comparative anatomy which led to his new classification, Cuvier's attention was called constantly to the peculiar co-ordination of parts in each individual organism. Thus an animal with sharp talons for catching living prey--as a member of the cat tribe--has also sharp teeth, adapted for tearing up the flesh of its victim, and a particular type of stomach, quite different from that of herbivorous creatures. This adaptation of all the parts of the animal to one another extends to the most diverse parts of the organism, and enables the skilled anatomist, from the observation of a single typical part, to draw inferences as to the structure of the entire animal--a fact which was of vast aid to Cuvier in his studies of paleontology. It did not enable Cuvier, nor does it enable any one else, to reconstruct fully the extinct animal from observation of a single bone, as has sometimes been asserted, but what it really does establish, in the hands of an expert, is sufficiently astonishing.
"While the study of the fossil remains of the greater quadrupeds is more satisfactory," he writes, "by the clear results which it affords, than that of the remains of other animals found in a fossil state, it is also complicated with greater and more numerous difficulties. Fossil shells are usually found quite entire, and retaining all the characters requisite for comparing them with the specimens contained in collections of natural history, or represented in the works of naturalists. Even the skeletons of fishes are found more or less entire, so that the general forms of their bodies can, for the most part, be ascertained, and usually, at least, their generic and specific characters are determinable, as these are mostly drawn from their solid parts. In quadrupeds, on the contrary,