An Autobiography [194]
spare space must be filled with a suitable set of iron flat blocks, so as to subject the article to be pressed to the requisite power.
As before stated, there may be many processes in the manufacturing arts in which such an enormous pressure may be useful; and this can be accomplished with perfect ease and certainty. I trust that this account of the principles and construction of such a machine may suggest some employment worthy of its powers. In the general use of the Mattress press, it would be best to supply the pressure water from an accumulator, which should be kept constantly full by the action of suitable pumps worked by a small steam-engine. The great press would require the high-pressure water only now and then; so that it would not be necessary to wait for the small pump to supply the pressure water when the Mattress was required to be in action.
1840. A Tapping Square, or instrument by which Perfect Verticality of the Tapping of Screwed Holes is insured.
[image]
The letter X shows how Screws are frequently made when tapped in the old mode; the letter T as they are always made when the Tapping Square is employed.
1840. A Mode of turning Segmental Work in the Ordinary Lathe
In executing an order for twenty locomotive engines for the Great Western Railway Company, there was necessarily a repetition of detail parts. Many of them required the labour of the most skilful workmen, as the parts referred to did not admit of their being executed by the lathe or planing-machine in their ordinary mode of application. But the cost of their execution by hand labour was so great, and the risk of inaccuracy was so common (where extreme accuracy was essential), that I had recourse to the aid of special mechanical contrivances and machine tools for the purpose of getting over the difficulty. The annexed illustration has reference to only one class of objects in which I effected great saving in the production, as well as great accuracy in the work. It refers to a contrivance for producing by the turning-lathe the eighty bands of the eccentrics for these twenty engines. Being of a segmental form, but with a projection at each extremity, which rendered their production and finish impossible by the ordinary lathe, I bethought me of applying what is termed the mangle motion to the rim of a face plate of the lay, with so many pins in it as to give the required course of segmental motion for the turning tool to operate upon, between the projections C C in the illustration.
[image]
I availed myself of the limited to-and-fro horizontal motion of the shaft of the mangle motion wheel, as it, at each end of the row of pegs --in the face plate (when it passes from the exterior to the interior range of them) in giving the feed motion to the tool in; the slide rest, "turned" the segmental exterior of the eccentric hoops. This it did perfectly, as the change of position of the small shaft occurred at the exact time when the cut was at its termination,--that being the correct moment to give the tool "the feed, or advance for the taking of the next cut. The saving, in respect to time, was 10 to 1 in comparison with the same amount of work done by hand labour; while the "truth" or correctness of the work done by this handy little application of the turning-lathe was absolutely perfect I have been the more particular in my allusion to this contrivance, as it is applicable to any lathe, and can perform work which no lathe without it can accomplish. The unceasing industry of such machines is no small addition to their attractions, in respect to the production of unquestionably accurate work.
1843. Invention of the Steam Hammer Pile-driver.
Described in text, p. 261.
1843. A Universal Flexible Joint for Steam and Water-pipes.
[Image]
The chief novelty in this swivel joint is the manner in which the packing of the joints is completely enclosed, thereby rendering them perfectly and permanently watertight.
1844. An Improvement in Blowing Fans and their Bearings.
The principle on which Blowing
As before stated, there may be many processes in the manufacturing arts in which such an enormous pressure may be useful; and this can be accomplished with perfect ease and certainty. I trust that this account of the principles and construction of such a machine may suggest some employment worthy of its powers. In the general use of the Mattress press, it would be best to supply the pressure water from an accumulator, which should be kept constantly full by the action of suitable pumps worked by a small steam-engine. The great press would require the high-pressure water only now and then; so that it would not be necessary to wait for the small pump to supply the pressure water when the Mattress was required to be in action.
1840. A Tapping Square, or instrument by which Perfect Verticality of the Tapping of Screwed Holes is insured.
[image]
The letter X shows how Screws are frequently made when tapped in the old mode; the letter T as they are always made when the Tapping Square is employed.
1840. A Mode of turning Segmental Work in the Ordinary Lathe
In executing an order for twenty locomotive engines for the Great Western Railway Company, there was necessarily a repetition of detail parts. Many of them required the labour of the most skilful workmen, as the parts referred to did not admit of their being executed by the lathe or planing-machine in their ordinary mode of application. But the cost of their execution by hand labour was so great, and the risk of inaccuracy was so common (where extreme accuracy was essential), that I had recourse to the aid of special mechanical contrivances and machine tools for the purpose of getting over the difficulty. The annexed illustration has reference to only one class of objects in which I effected great saving in the production, as well as great accuracy in the work. It refers to a contrivance for producing by the turning-lathe the eighty bands of the eccentrics for these twenty engines. Being of a segmental form, but with a projection at each extremity, which rendered their production and finish impossible by the ordinary lathe, I bethought me of applying what is termed the mangle motion to the rim of a face plate of the lay, with so many pins in it as to give the required course of segmental motion for the turning tool to operate upon, between the projections C C in the illustration.
[image]
I availed myself of the limited to-and-fro horizontal motion of the shaft of the mangle motion wheel, as it, at each end of the row of pegs --in the face plate (when it passes from the exterior to the interior range of them) in giving the feed motion to the tool in; the slide rest, "turned" the segmental exterior of the eccentric hoops. This it did perfectly, as the change of position of the small shaft occurred at the exact time when the cut was at its termination,--that being the correct moment to give the tool "the feed, or advance for the taking of the next cut. The saving, in respect to time, was 10 to 1 in comparison with the same amount of work done by hand labour; while the "truth" or correctness of the work done by this handy little application of the turning-lathe was absolutely perfect I have been the more particular in my allusion to this contrivance, as it is applicable to any lathe, and can perform work which no lathe without it can accomplish. The unceasing industry of such machines is no small addition to their attractions, in respect to the production of unquestionably accurate work.
1843. Invention of the Steam Hammer Pile-driver.
Described in text, p. 261.
1843. A Universal Flexible Joint for Steam and Water-pipes.
[Image]
The chief novelty in this swivel joint is the manner in which the packing of the joints is completely enclosed, thereby rendering them perfectly and permanently watertight.
1844. An Improvement in Blowing Fans and their Bearings.
The principle on which Blowing