Beautiful Code [212]
For example, let's look at the LU decomposition subroutine SGBTRF, which is in the second level of subroutines. To save space, I removed the initial comments in the header and other excepts that I do not directly discuss (you can view the complete subroutine at http://www.netlib.org/lapack/explore-html/sgbtrf.f.html):
Code View: Scroll / Show All
SUBROUTINE SGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
.
.
.
Initial comments, description of parameters
.
,
,
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
.
.
.
Checking parameters
.
.
.
CALL XERBLA( 'SGBTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Determine the block size for this environment
*
NB = ILAENV( 1, 'SGBTRF', ' ', M, N, KL, KU )
*
* The block size must not exceed the limit set by the size of the
* local arrays WORK13 and WORK31.
*
NB = MIN( NB, NBMAX )
*
IF( NB.LE.1 .OR. NB.GT.KL ) THEN
*
* Use unblocked code
*
CALL SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
ELSE
*
* Use blocked code
*
* Zero the superdiagonal elements of the work array WORK13
*
DO 20 J = 1, NB
DO 10 I = 1, J - 1
WORK13( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
*
* Zero the subdiagonal elements of the work array WORK31
*
DO 40 J = 1, NB
DO 30 I = J + 1, NB
WORK31( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* Gaussian elimination with partial pivoting
*
* Set fill-in elements in columns KU+2 to KV to zero
*
DO 60 J = KU + 2, MIN( KV, N )
DO 50 I = KV - J + 2, KL
AB( I, J ) = ZERO
50 CONTINUE
60 CONTINUE
*
* JU is the index of the last column affected by the current
* stage of the factorization
*
JU = 1
*
DO 180 J = 1, MIN( M, N ), NB
JB = MIN( NB, MIN( M, N )-J+1 )
*
* The active part of the matrix is partitioned
*
* A11 A12 A13
* A21 A22 A23
* A31 A32 A33
*
* Here A11, A21 and A31 denote the current block of JB columns
* which is about to be factorized. The number of rows in the
* partitioning are JB, I2, I3 respectively, and the numbers
* of columns are JB, J2, J3. The superdiagonal elements of A13
* and the subdiagonal elements of A31 lie outside the band.
*
I2 = MIN( KL-JB, M-J-JB+1 )
I3 = MIN( JB, M-J-KL+1 )
*
* J2 and J3 are computed after JU has been updated.
*
* Factorize the current block of JB columns
*
DO 80 JJ = J, J + JB - 1
*
* Set fill-in elements in column JJ+KV to zero
*
IF( JJ+KV.LE.N ) THEN
DO 70 I = 1, KL
AB( I, JJ+KV ) = ZERO
70 CONTINUE
END IF
*
* Find pivot and test for singularity. KM is the number of
* subdiagonal elements in the current column.
*
KM = MIN( KL, M-JJ )
JP = ISAMAX( KM+1, AB( KV+1, JJ ), 1 )
IPIV( JJ ) = JP + JJ - J
IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
IF( JP.NE.1 ) THEN
*
* Apply interchange to columns J to J+JB-1
*
IF( JP+JJ-1.LT.J+KL ) THEN
*
CALL SSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
$ AB( KV+JP+JJ-J, J ), LDAB-1 )
ELSE
*
* The interchange affects columns J to JJ-1 of A31
* which are stored in the work array WORK31
*
CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
$ WORK31( JP+JJ-J-KL, 1 ), LDWORK )
CALL SSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
$ AB( KV+JP,