Darwin and Modern Science [166]
variants as a mean value. If, for example, under ordinary conditions the number 10 is the most frequent variant for the stamens of Sedum spectabile, in special circumstances (red light) this is replaced by the number 5. The more accurately we know the conditions for a particular form or number, and are able to reproduce it by experiment, the nearer we are to achieving our aim of rendering a particular variation impossible or of making it dominant.
In addition to the individual variations of a species, more pronounced fluctuations occur relatively rarely and sporadically which are spoken of as "single variations," or if specially striking as abnormalities or monstrosities. These forms have long attracted the attention of morphologists; a large number of observations of this kind are given in the handbooks of Masters (Masters, "Vegetable Teratology", London, 1869.) and Penzig (Penzig, "Pflanzen-Teratologie, Vols I. and II. Genua, 1890-94.) These variations, which used to be regarded as curiosities, have now assumed considerable importance in connection with the causes of form- development. They also possess special interest in relation to the question of heredity, a subject which does not at present concern us, as such deviations from normal development undoubtedly arise as individual variations induced by the influence of environment.
Abnormal developments of all kinds in stems, leaves, and flowers, may be produced by parasites, insects, or fungi. They may also be induced by injury, as Blaringhem (Blaringhem, "Mutation et traumatismes", Paris, 1907.) has more particularly demonstrated, which, by cutting away the leading shoots of branches in an early stage of development, caused fasciation, torsion, anomalous flowers, etc. The experiments of Blaringhem point to the probability that disturbances in the conditions of food-supply consequent on injury are the cause of the production of monstrosities. This is certainly the case in my experiments with species of Sempervivum (Klebs, "Kunstliche Metamorphosen", Stuttgart, 1906.); individuals, which at first formed normal flowers, produced a great variety of abnormalities as the result of changes in nutrition, we may call to mind the fact that the formation of inflorescences occurs normally when a vigorous production of organic compounds, such as starch, sugar, etc. follows a diminution in the supply of mineral salts. On the other hand, the development of inflorescences is entirely suppressed if, at a suitable moment before the actual foundations have been laid, water and mineral salts are supplied to the roots. If, during the week when the inflorescence has just been laid down and is growing very slowly, the supply of water and salts is increased, the internal conditions of the cells are essentially changed. At a later stage, after the elongation of the inflorescence, rosettes of leaves are produced instead of flowers, and structures intermediate between the two kinds of organs; a number of peculiar plant-forms are thus obtained (Cf. Lotsy, "Vorlesungen uber Deszendenztheorien", Vol. II. pl. 3, Jena, 1908.) Abnormalities in the greatest variety are produced in flowers by varying the time at which the stimulus is applied, and by the cooperation of other factors such as temperature, darkness, etc. In number and arrangement the several floral members vary within wide limits; sepals, petals, stamens, and carpels are altered in form and colour, a transformation of stamens to carpels and from carpels to stamens occurs in varying degrees. The majority of the deviations observed had not previously been seen either under natural conditions or in cultivation; they were first brought to light through the influence of external factors.
Such transformations of flowers become apparent at a time, which is separated by about two months from the period at which the particular cause began to act. There is, therefore, no close connection between the appearance of the modifications and the external conditions which prevail at the moment. When we are ignorant of the causes which
In addition to the individual variations of a species, more pronounced fluctuations occur relatively rarely and sporadically which are spoken of as "single variations," or if specially striking as abnormalities or monstrosities. These forms have long attracted the attention of morphologists; a large number of observations of this kind are given in the handbooks of Masters (Masters, "Vegetable Teratology", London, 1869.) and Penzig (Penzig, "Pflanzen-Teratologie, Vols I. and II. Genua, 1890-94.) These variations, which used to be regarded as curiosities, have now assumed considerable importance in connection with the causes of form- development. They also possess special interest in relation to the question of heredity, a subject which does not at present concern us, as such deviations from normal development undoubtedly arise as individual variations induced by the influence of environment.
Abnormal developments of all kinds in stems, leaves, and flowers, may be produced by parasites, insects, or fungi. They may also be induced by injury, as Blaringhem (Blaringhem, "Mutation et traumatismes", Paris, 1907.) has more particularly demonstrated, which, by cutting away the leading shoots of branches in an early stage of development, caused fasciation, torsion, anomalous flowers, etc. The experiments of Blaringhem point to the probability that disturbances in the conditions of food-supply consequent on injury are the cause of the production of monstrosities. This is certainly the case in my experiments with species of Sempervivum (Klebs, "Kunstliche Metamorphosen", Stuttgart, 1906.); individuals, which at first formed normal flowers, produced a great variety of abnormalities as the result of changes in nutrition, we may call to mind the fact that the formation of inflorescences occurs normally when a vigorous production of organic compounds, such as starch, sugar, etc. follows a diminution in the supply of mineral salts. On the other hand, the development of inflorescences is entirely suppressed if, at a suitable moment before the actual foundations have been laid, water and mineral salts are supplied to the roots. If, during the week when the inflorescence has just been laid down and is growing very slowly, the supply of water and salts is increased, the internal conditions of the cells are essentially changed. At a later stage, after the elongation of the inflorescence, rosettes of leaves are produced instead of flowers, and structures intermediate between the two kinds of organs; a number of peculiar plant-forms are thus obtained (Cf. Lotsy, "Vorlesungen uber Deszendenztheorien", Vol. II. pl. 3, Jena, 1908.) Abnormalities in the greatest variety are produced in flowers by varying the time at which the stimulus is applied, and by the cooperation of other factors such as temperature, darkness, etc. In number and arrangement the several floral members vary within wide limits; sepals, petals, stamens, and carpels are altered in form and colour, a transformation of stamens to carpels and from carpels to stamens occurs in varying degrees. The majority of the deviations observed had not previously been seen either under natural conditions or in cultivation; they were first brought to light through the influence of external factors.
Such transformations of flowers become apparent at a time, which is separated by about two months from the period at which the particular cause began to act. There is, therefore, no close connection between the appearance of the modifications and the external conditions which prevail at the moment. When we are ignorant of the causes which