Darwin and Modern Science [276]
"The Behavior of the Lower Animals". Columbia U. Press, N.Y. 1906.) a Paramoecium constantly tends to swerve towards the aboral side of its body owing to certain peculiarities in the set and power of its cilia. But the tendency to swim in a circle, thus produced, is neutralised by the rotation of the creature about its longitudinal axis. Thus the direction of the swerves IN RELATION TO THE PATH of the organism is always changing, with the result that the creature moves in what approximates to a straight line, being however actually a spiral about the general line of progress. This method of motion is strikingly like the circumnutation of a plant, the apex of which also describes a spiral about the general line of growth. A rooted plant obviously cannot rotate on its axis, but the regular series of curvatures of which its growth consists correspond to the aberrations of Paramoecium distributed regularly about its course by means of rotation. (In my address to the Biological Section of the British Association at Cardiff (1891) I have attempted to show the connection between circumnutation and RECTIPETALITY, i.e. the innate capacity of growing in a straight line.) Just as a plant changes its direction of growth by an exaggeration of one of the curvature-elements of which circumnutation consists, so does a Paramoecium change its course by the accentuation of one of the deviations of which its path is built. Jennings has shown that the infusoria, etc., react to stimuli by what is known as the "method of trial." If an organism swims into a region where the temperature is too high or where an injurious substance is present, it changes its course. It then moves forward again, and if it is fortunate enough to escape the influence, it continues to swim in the given direction. If however its change of direction leads it further into the heated or poisonous region it repeats the movement until it emerges from its difficulties. Jennings finds in the movements of the lower organisms an analogue with what is known as pain in conscious organisms. There is certainly this much resemblance that a number of quite different sub-injurious agencies produce in the lower organisms a form of reaction by the help of which they, in a partly fortuitous way, escape from the threatening element in their environment. The higher animals are stimulated in a parallel manner to vague and originally purposeless movements, one of which removes the discomfort under which they suffer, and the organism finally learns to perform the appropriate movement without going through the tentative series of actions.
I am tempted to recognise in circumnutation a similar groundwork of tentative movements out of which the adaptive ones were originally selected by a process rudely representative of learning by experience.
It is, however, simpler to confine ourselves to the assumption that those plants have survived which have acquired through unknown causes the power of reacting in appropriate ways to the external stimuli of light, gravity, etc. It is quite possible to conceive this occurring in plants which have no power of circumnutating--and, as already pointed out, physiologists do as a fact neglect circumnutation as a factor in the evolution of movements. Whatever may be the fate of Darwin's theory of circumnutation there is no doubt that the research he carried out in support of, and by the light of, this hypothesis has had a powerful influence in guiding the modern theories of the behaviour of plants. Pfeffer ("The Physiology of Plants", Eng. Tr. III. page 11.), who more than any one man has impressed on the world a rational view of the reactions of plants, has acknowledged in generous words the great value of Darwin's work in the same direction. The older view was that, for instance, curvature towards the light is the direct mechanical result of the difference of illumination on the lighted and shaded surfaces of the plant. This has been proved to be an incorrect explanation of the fact, and Darwin by his work on the transmission of stimuli has
I am tempted to recognise in circumnutation a similar groundwork of tentative movements out of which the adaptive ones were originally selected by a process rudely representative of learning by experience.
It is, however, simpler to confine ourselves to the assumption that those plants have survived which have acquired through unknown causes the power of reacting in appropriate ways to the external stimuli of light, gravity, etc. It is quite possible to conceive this occurring in plants which have no power of circumnutating--and, as already pointed out, physiologists do as a fact neglect circumnutation as a factor in the evolution of movements. Whatever may be the fate of Darwin's theory of circumnutation there is no doubt that the research he carried out in support of, and by the light of, this hypothesis has had a powerful influence in guiding the modern theories of the behaviour of plants. Pfeffer ("The Physiology of Plants", Eng. Tr. III. page 11.), who more than any one man has impressed on the world a rational view of the reactions of plants, has acknowledged in generous words the great value of Darwin's work in the same direction. The older view was that, for instance, curvature towards the light is the direct mechanical result of the difference of illumination on the lighted and shaded surfaces of the plant. This has been proved to be an incorrect explanation of the fact, and Darwin by his work on the transmission of stimuli has