Darwin and Modern Science [378]
to illustrate them by certain recent observations of a very remarkable character.
Stars and planets are formed of materials which yield to the enormous forces called into play by gravity and rotation. This is obviously true if they are gaseous or fluid, and even solid matter becomes plastic under sufficiently great stresses. Nothing approaching a complete study of the equilibrium of a heterogeneous star has yet been found possible, and we are driven to consider only bodies of simpler construction. I shall begin therefore by explaining what is known about the shapes which may be assumed by a mass of incompressible liquid of uniform density under the influences of gravity and of rotation. Such a liquid mass may be regarded as an ideal star, which resembles a real star in the fact that it is formed of gravitating and rotating matter, and because its shape results from the forces to which it is subject. It is unlike a star in that it possesses the attributes of incompressibility and of uniform density. The difference between the real and the ideal is doubtless great, yet the similarity is great enough to allow us to extend many of the conclusions as to ideal liquid stars to the conditions which must hold good in reality. Thus with the object of obtaining some insight into actuality, it is justifiable to discuss an avowedly ideal problem at some length.
The attraction of gravity alone tends to make a mass of liquid assume the shape of a sphere, and the effects of rotation, summarised under the name of centrifugal force, are such that the liquid seeks to spread itself outwards from the axis of rotation. It is a singular fact that it is unnecessary to take any account of the size of the mass of liquid under consideration, because the shape assumed is exactly the same whether the mass be small or large, and this renders the statement of results much easier than would otherwise be the case.
A mass of liquid at rest will obviously assume the shape of a sphere, under the influence of gravitation, and it is a stable form, because any oscillation of the liquid which might be started would gradually die away under the influence of friction, however small. If now we impart to the whole mass of liquid a small speed of rotation about some axis, which may be called the polar axis, in such a way that there are no internal currents and so that it spins in the same way as if it were solid, the shape will become slightly flattened like an orange. Although the earth and the other planets are not homogeneous they behave in the same way, and are flattened at the poles and protuberant at the equator. This shape may therefore conveniently be described as planetary.
If the planetary body be slightly deformed the forces of restitution are slightly less than they were for the sphere; the shape is stable but somewhat less so than the sphere. We have then a planetary spheroid, rotating slowly, slightly flattened at the poles, with a high degree of stability, and possessing a certain amount of rotational momentum. Let us suppose this ideal liquid star to be somewhere in stellar space far removed from all other bodies; then it is subject to no external forces, and any change which ensues must come from inside. Now the amount of rotational momentum existing in a system in motion can neither be created nor destroyed by any internal causes, and therefore, whatever happens, the amount of rotational momentum possessed by the star must remain absolutely constant.
A real star radiates heat, and as it cools it shrinks. Let us suppose then that our ideal star also radiates and shrinks, but let the process proceed so slowly that any internal currents generated in the liquid by the cooling are annulled so quickly by fluid friction as to be insignificant; further let the liquid always remain at any instant incompressible and homogeneous. All that we are concerned with is that, as time passes, the liquid star shrinks, rotates in one piece as if it were solid, and remains incompressible and homogeneous. The condition is of course artificial,
Stars and planets are formed of materials which yield to the enormous forces called into play by gravity and rotation. This is obviously true if they are gaseous or fluid, and even solid matter becomes plastic under sufficiently great stresses. Nothing approaching a complete study of the equilibrium of a heterogeneous star has yet been found possible, and we are driven to consider only bodies of simpler construction. I shall begin therefore by explaining what is known about the shapes which may be assumed by a mass of incompressible liquid of uniform density under the influences of gravity and of rotation. Such a liquid mass may be regarded as an ideal star, which resembles a real star in the fact that it is formed of gravitating and rotating matter, and because its shape results from the forces to which it is subject. It is unlike a star in that it possesses the attributes of incompressibility and of uniform density. The difference between the real and the ideal is doubtless great, yet the similarity is great enough to allow us to extend many of the conclusions as to ideal liquid stars to the conditions which must hold good in reality. Thus with the object of obtaining some insight into actuality, it is justifiable to discuss an avowedly ideal problem at some length.
The attraction of gravity alone tends to make a mass of liquid assume the shape of a sphere, and the effects of rotation, summarised under the name of centrifugal force, are such that the liquid seeks to spread itself outwards from the axis of rotation. It is a singular fact that it is unnecessary to take any account of the size of the mass of liquid under consideration, because the shape assumed is exactly the same whether the mass be small or large, and this renders the statement of results much easier than would otherwise be the case.
A mass of liquid at rest will obviously assume the shape of a sphere, under the influence of gravitation, and it is a stable form, because any oscillation of the liquid which might be started would gradually die away under the influence of friction, however small. If now we impart to the whole mass of liquid a small speed of rotation about some axis, which may be called the polar axis, in such a way that there are no internal currents and so that it spins in the same way as if it were solid, the shape will become slightly flattened like an orange. Although the earth and the other planets are not homogeneous they behave in the same way, and are flattened at the poles and protuberant at the equator. This shape may therefore conveniently be described as planetary.
If the planetary body be slightly deformed the forces of restitution are slightly less than they were for the sphere; the shape is stable but somewhat less so than the sphere. We have then a planetary spheroid, rotating slowly, slightly flattened at the poles, with a high degree of stability, and possessing a certain amount of rotational momentum. Let us suppose this ideal liquid star to be somewhere in stellar space far removed from all other bodies; then it is subject to no external forces, and any change which ensues must come from inside. Now the amount of rotational momentum existing in a system in motion can neither be created nor destroyed by any internal causes, and therefore, whatever happens, the amount of rotational momentum possessed by the star must remain absolutely constant.
A real star radiates heat, and as it cools it shrinks. Let us suppose then that our ideal star also radiates and shrinks, but let the process proceed so slowly that any internal currents generated in the liquid by the cooling are annulled so quickly by fluid friction as to be insignificant; further let the liquid always remain at any instant incompressible and homogeneous. All that we are concerned with is that, as time passes, the liquid star shrinks, rotates in one piece as if it were solid, and remains incompressible and homogeneous. The condition is of course artificial,