Online Book Reader

Home Category

Darwin and Modern Science [383]

By Root 7120 0
but I will only describe one of the methods used, that of the great astronomer Argelander. In the neighbourhood of the star under observation some half dozen standard stars are selected of known invariable magnitudes, some being brighter and some fainter than the star to be measured; so that these stars afford a visible scale of brightness. Suppose we number them in order of increasing brightness from 1 to 6; then the observer estimates that on a given night his star falls between stars 2 and 3, on the next night, say between 3 and 4, and then again perhaps it may return to between 2 and 3, and so forth. With practice he learns to evaluate the brightness down to small fractions of a magnitude, even a hundredth part of a magnitude is not quite negligible.

For example, in observing the star RR Centauri five stars were in general used for comparison by Dr Roberts, and in course of three months he secured thereby 300 complete observations. When the period of the cycle had been ascertained exactly, these 300 values were reduced to mean values which appertained to certain mean places in the cycle, and a mean light-curve was obtained in this way. Figures titled "Light curve of RR Centauri" (Fig. 5) and "The light-curve and system of Beta Lyrae" (Fig. 7) show examples of light curves.

I shall now follow out the results of the observation of RR Centauri not only because it affords the easiest way of explaining these investigations, but also because it is one of the stars which furnishes the most striking results in connection with the object of this essay. (See "Monthly notices R.A.S." Vol. 63, 1903, page 527.) This star has a mean magnitude of about 7 1/2, and it is therefore invisible to the naked eye. Its period of variability is 14h 32m 10s.76, the last refinement of precision being of course only attained in the final stages of reduction. Twenty-nine mean values of the magnitude were determined, and they were nearly equally spaced over the whole cycle of changes. The black dots in Fig. 5 exhibit the mean values determined by Dr Roberts. The last three dots on the extreme right are merely the same as the first three on the extreme left, and are repeated to show how the next cycle would begin. The smooth dotted curve will be explained hereafter, but, by reference to the scale of magnitudes on the margins of the figure, it may be used to note that the dots might be brought into a perfectly smooth curve by shifting some few of the dots by about a hundredth of a magnitude.

This light-curve presents those characteristics which are due to successive eclipses, but the exact form of the curve must depend on the nature of the two mutually eclipsing stars. If we are to interpret the curve with all possible completeness, it is necessary to make certain assumptions as to the stars. It is assumed then that the stars are equally bright all over their disks, and secondly that they are not surrounded by an extensive absorptive atmosphere. This last appears to me to be the most dangerous assumption involved in the whole theory.

Making these assumptions, however, it is found that if each of the eclipsing stars were spherical it would not be possible to generate such a curve with the closest accuracy. The two stars are certainly close together, and it is obvious that in such a case the tidal forces exercised by each on the other must be such as to elongate the figure of each towards the other. Accordingly it is reasonable to adopt the hypothesis that the system consists of a pair of elongated ellipsoids, with their longest axes pointed towards one another. No supposition is adopted a priori as to the ratio of the two masses, or as to their relative size or brightness, and the orbit may have any degree of eccentricity. These last are all to be determined from the nature of the light-curve.

In the case of RR Centauri, however, Dr Roberts finds the conditions are best satisfied by supposing the orbit to be circular, and the sizes and masses of the components to be equal, while their luminosities are to one another
Return Main Page Previous Page Next Page

®Online Book Reader