Online Book Reader

Home Category

Design of Everyday Things [14]

By Root 2535 0
are visible and the implications clear.

Other clues to how things work come from their visible structure—in particular from affordances, constraints, and mappings. Consider a pair of scissors: even if you have never seen or used them before, you can see that the number of possible actions is limited. The holes are clearly there to put something into, and the only logical things that will fit are fingers. The holes are affordances: they allow the the fingers to be inserted. The sizes of the holes provide constraints to limit the possible fingers: the big hole suggests several fingers, the small hole only one. The mapping between holes and fingers—the set of possible operations—is suggested and constrained by the holes. Moreover, the operation is not sensitive to finger placement: if you use the wrong fingers, the scissors still work. You can figure out the scissors because their operating parts are visible and the implications clear. The conceptual model is made obvious, and there is effective use of affordances and constraints.

1.7 Carelman’s Tandem “Convergent Bicycle (Model for Fiancés).” Jacques Carelman: “Convergent Bicycle” Copyright © 1969-76-80 by Jacques Carelman and A. D. A. G. P. Paris. From Jacques Carelman, Catalog of Unfindable Objects, Balland, éditeur, Paris-France. Used by permission of the artist.

As a counterexample, consider the digital watch, one with two to four push buttons on the front or side. What are those push buttons for? How would you set the time? There is no way to tell—no evident relationship between the operating controls and the functions, no constraints, no apparent mappings. With the scissors, moving the handle makes the blades move. The watch and the Leitz slide projector provide no visible relationship between the buttons and the possible actions, no discernible relationship between the actions and the end result.

Principles of Design for Understandability and Usability


We have now encountered the fundamental principles of designing for people: (1) provide a good conceptual model and (2) make things visible.

PROVIDE A GOOD CONCEPTUAL MODEL


A good conceptual model allows us to predict the effects of our actions. Without a good model we operate by rote, blindly; we do operations as we were told to do them; we can’t fully appreciate why, what effects to expect, or what to do if things go wrong. As long as things work properly, we can manage. When things go wrong, however, or when we come upon a novel situation, then we need a deeper understanding, a good model.

For everyday things, conceptual models need not be very complex. After all, scissors, pens, and light switches are pretty simple devices. There is no need to understand the underlying physics or chemistry of each device we own, simply the relationship between the controls and the outcomes. When the model presented to us is inadequate or wrong (or, worse, nonexistent), we can have difficulties. Let me tell you about my refrigerator.

My house has an ordinary, two-compartment refrigerator—nothing very fancy about it. The problem is that I can’t set the temperature properly. There are only two things to do: adjust the temperature of the freezer compartment and adjust the temperature of the fresh food compartment. And there are two controls, one labeled “freezer,” the other “fresh food.” What’s the problem?

You try it. Figure 1.8 shows the instruction plate from inside the refrigerator. Now, suppose the freezer is too cold, the fresh food section just right. You want to make the freezer warmer, keeping the fresh food constant. Go on, read the instructions, figure them out.

1.8 My Refrigerator. Two compartments—fresh food and freezer—and two controls (in the fresh food unit). The illustration shows the controls and instructions. Your task: Suppose the freezer is too cold, the fresh food section just right. How would you adjust the controls so as to make the freezer warmer and keep the fresh food the same? (From Norman, 1986.)

1.9 Two Conceptual Models for My Refrigerator. The model A (above)

Return Main Page Previous Page Next Page

®Online Book Reader