Edison, His Life and Inventions [183]
experimented with metal wheels under all conditions of speed and track conditions. It was several months before he could convey one hundred amperes by means of such contacts, but he worked out at last a satisfactory device which was equal to the task. The next point was to secure a joint between contiguous rails such as would permit of the passage of several thousand amperes without introducing undue resistance. This was also accomplished.
Objections were naturally made to rails out in the open on the street surface carrying large currents at a potential of twenty volts. It was said that vehicles with iron wheels passing over the tracks and spanning the two rails would short-circuit the current, "chew" themselves up, and destroy the dynamos generating the current by choking all that tremendous amount of energy back into them. Edison tackled the objection squarely and short-circuited his track with such a vehicle, but succeeded in getting only about two hundred amperes through the wheels, the low voltage and the insulating properties of the axle- grease being sufficient to account for such a result. An iron bar was also used, polished, and with a man standing on it to insure solid contact; but only one thousand amperes passed through it--i.e., the amount required by a single car, and, of course, much less than the capacity of the generators able to operate a system of several hundred cars.
Further interesting experiments showed that the expected large leakage of current from the rails in wet weather did not materialize. Edison found that under the worst conditions with a wet and salted track, at a potential difference of twenty volts between the two rails, the extreme loss was only two and one-half horse-power. In this respect the phenomenon followed the same rule as that to which telegraph wires are subject--namely, that the loss of insulation is greater in damp, murky weather when the insulators are covered with wet dust than during heavy rains when the insulators are thoroughly washed by the action of the water. In like manner a heavy rain-storm cleaned the tracks from the accumulations due chiefly to the droppings of the horses, which otherwise served largely to increase the conductivity. Of course, in dry weather the loss of current was practically nothing, and, under ordinary conditions, Edison held, his system was in respect to leakage and the problems of electrolytic attack of the current on adjacent pipes, etc., as fully insulated as the standard trolley network of the day. The cost of his system Mr. Edison placed at from $30,000 to $100,000 per mile of double track, in accordance with local conditions, and in this respect comparing very favorably with the cable systems then so much in favor for heavy traffic. All the arguments that could be urged in support of this ingenious system are tenable and logical at the present moment; but the trolley had its way except on a few lines where the conduit-and-shoe method was adopted; and in the intervening years the volume of traffic created and handled by electricity in centres of dense population has brought into existence the modern subway.
But down to the moment of the preparation of this biography, Edison has retained an active interest in transportation problems, and his latest work has been that of reviving the use of the storage battery for street-car purposes. At one time there were a number of storage-battery lines and cars in operation in such cities as Washington, New York, Chicago, and Boston; but the costs of operation and maintenance were found to be inordinately high as compared with those of the direct-supply methods, and the battery cars all disappeared. The need for them under many conditions remained, as, for example, in places in Greater New York where the overhead trolley wires are forbidden as objectionable, and where the ground is too wet or too often submerged to permit of the conduit with the slot. Some of the roads in Greater New York have been anxious to secure such cars, and, as usual, the most resourceful electrical engineer and inventor
Objections were naturally made to rails out in the open on the street surface carrying large currents at a potential of twenty volts. It was said that vehicles with iron wheels passing over the tracks and spanning the two rails would short-circuit the current, "chew" themselves up, and destroy the dynamos generating the current by choking all that tremendous amount of energy back into them. Edison tackled the objection squarely and short-circuited his track with such a vehicle, but succeeded in getting only about two hundred amperes through the wheels, the low voltage and the insulating properties of the axle- grease being sufficient to account for such a result. An iron bar was also used, polished, and with a man standing on it to insure solid contact; but only one thousand amperes passed through it--i.e., the amount required by a single car, and, of course, much less than the capacity of the generators able to operate a system of several hundred cars.
Further interesting experiments showed that the expected large leakage of current from the rails in wet weather did not materialize. Edison found that under the worst conditions with a wet and salted track, at a potential difference of twenty volts between the two rails, the extreme loss was only two and one-half horse-power. In this respect the phenomenon followed the same rule as that to which telegraph wires are subject--namely, that the loss of insulation is greater in damp, murky weather when the insulators are covered with wet dust than during heavy rains when the insulators are thoroughly washed by the action of the water. In like manner a heavy rain-storm cleaned the tracks from the accumulations due chiefly to the droppings of the horses, which otherwise served largely to increase the conductivity. Of course, in dry weather the loss of current was practically nothing, and, under ordinary conditions, Edison held, his system was in respect to leakage and the problems of electrolytic attack of the current on adjacent pipes, etc., as fully insulated as the standard trolley network of the day. The cost of his system Mr. Edison placed at from $30,000 to $100,000 per mile of double track, in accordance with local conditions, and in this respect comparing very favorably with the cable systems then so much in favor for heavy traffic. All the arguments that could be urged in support of this ingenious system are tenable and logical at the present moment; but the trolley had its way except on a few lines where the conduit-and-shoe method was adopted; and in the intervening years the volume of traffic created and handled by electricity in centres of dense population has brought into existence the modern subway.
But down to the moment of the preparation of this biography, Edison has retained an active interest in transportation problems, and his latest work has been that of reviving the use of the storage battery for street-car purposes. At one time there were a number of storage-battery lines and cars in operation in such cities as Washington, New York, Chicago, and Boston; but the costs of operation and maintenance were found to be inordinately high as compared with those of the direct-supply methods, and the battery cars all disappeared. The need for them under many conditions remained, as, for example, in places in Greater New York where the overhead trolley wires are forbidden as objectionable, and where the ground is too wet or too often submerged to permit of the conduit with the slot. Some of the roads in Greater New York have been anxious to secure such cars, and, as usual, the most resourceful electrical engineer and inventor