Edison, His Life and Inventions [186]
early in the nineties. Not only did he develop thoroughly the refining of the crushed ore, so that after it had passed the four hundred and eighty magnets in the mill, the concentrates came out finally containing 91 to 93 per cent. of iron oxide, but he also devised collateral machinery, methods and processes all fundamental in their nature. These are too numerous to specify in detail, as they extended throughout the various ramifications of the plant, but the principal ones are worthy of mention, such as:
The giant rolls (for crushing). Intermediate rolls. Three-high rolls. Giant cranes (215 feet long span). Vertical dryer. Belt conveyors. Air separation. Mechanical separation of phosphorus. Briquetting.
That Mr. Edison's work was appreciated at the time is made evident by the following extract from an article describing the Edison plant, published in The Iron Age of October 28, 1897; in which, after mentioning his struggle with adverse conditions, it says: "There is very little that is showy, from the popular point of view, in the gigantic work which Mr. Edison has done during these years, but to those who are capable of grasping the difficulties encountered, Mr. Edison appears in the new light of a brilliant constructing engineer grappling with technical and commercial problems of the highest order. His genius as an inventor is revealed in many details of the great concentrating plant.... But to our mind, originality of the highest type as a constructor and designer appears in the bold way in which he sweeps aside accepted practice in this particular field and attains results not hitherto approached. He pursues methods in ore-dressing at which those who are trained in the usual practice may well stand aghast. But considering the special features of the problems to be solved, his methods will be accepted as those economically wise and expedient."
A cursory glance at these problems will reveal their import. Mountains must be reduced to dust; all this dust must be handled in detail, so to speak, and from it must be separated the fine particles of iron constituting only one-fourth or one-fifth of its mass; and then this iron-ore dust must be put into such shape that it could be commercially shipped and used. One of the most interesting and striking investigations made by Edison in this connection is worthy of note, and may be related in his own words: "I felt certain that there must be large bodies of magnetite in the East, which if crushed and concentrated would satisfy the wants of the Eastern furnaces for steel-making. Having determined to investigate the mountain regions of New Jersey, I constructed a very sensitive magnetic needle, which would dip toward the earth if brought over any considerable body of magnetic iron ore. One of my laboratory assistants went out with me and we visited many of the mines of New Jersey, but did not find deposits of any magnitude. One day, however, as we drove over a mountain range, not known as iron-bearing land, I was astonished to find that the needle was strongly attracted and remained so; thus indicating that the whole mountain was underlaid with vast bodies of magnetic ore.
"I knew it was a commercial problem to produce high-grade Bessemer ore from these deposits, and took steps to acquire a large amount of the property. I also planned a great magnetic survey of the East, and I believe it remains the most comprehensive of its kind yet performed. I had a number of men survey a strip reaching from Lower Canada to North Carolina. The only instrument we used was the special magnetic needle. We started in Lower Canada and travelled across the line of march twenty-five miles; then advanced south one thousand feet; then back across the line of march again twenty-five miles; then south another thousand feet, across again, and so on. Thus we advanced all the way to North Carolina, varying our cross-country march from two to twenty-five miles, according to geological formation. Our magnetic
The giant rolls (for crushing). Intermediate rolls. Three-high rolls. Giant cranes (215 feet long span). Vertical dryer. Belt conveyors. Air separation. Mechanical separation of phosphorus. Briquetting.
That Mr. Edison's work was appreciated at the time is made evident by the following extract from an article describing the Edison plant, published in The Iron Age of October 28, 1897; in which, after mentioning his struggle with adverse conditions, it says: "There is very little that is showy, from the popular point of view, in the gigantic work which Mr. Edison has done during these years, but to those who are capable of grasping the difficulties encountered, Mr. Edison appears in the new light of a brilliant constructing engineer grappling with technical and commercial problems of the highest order. His genius as an inventor is revealed in many details of the great concentrating plant.... But to our mind, originality of the highest type as a constructor and designer appears in the bold way in which he sweeps aside accepted practice in this particular field and attains results not hitherto approached. He pursues methods in ore-dressing at which those who are trained in the usual practice may well stand aghast. But considering the special features of the problems to be solved, his methods will be accepted as those economically wise and expedient."
A cursory glance at these problems will reveal their import. Mountains must be reduced to dust; all this dust must be handled in detail, so to speak, and from it must be separated the fine particles of iron constituting only one-fourth or one-fifth of its mass; and then this iron-ore dust must be put into such shape that it could be commercially shipped and used. One of the most interesting and striking investigations made by Edison in this connection is worthy of note, and may be related in his own words: "I felt certain that there must be large bodies of magnetite in the East, which if crushed and concentrated would satisfy the wants of the Eastern furnaces for steel-making. Having determined to investigate the mountain regions of New Jersey, I constructed a very sensitive magnetic needle, which would dip toward the earth if brought over any considerable body of magnetic iron ore. One of my laboratory assistants went out with me and we visited many of the mines of New Jersey, but did not find deposits of any magnitude. One day, however, as we drove over a mountain range, not known as iron-bearing land, I was astonished to find that the needle was strongly attracted and remained so; thus indicating that the whole mountain was underlaid with vast bodies of magnetic ore.
"I knew it was a commercial problem to produce high-grade Bessemer ore from these deposits, and took steps to acquire a large amount of the property. I also planned a great magnetic survey of the East, and I believe it remains the most comprehensive of its kind yet performed. I had a number of men survey a strip reaching from Lower Canada to North Carolina. The only instrument we used was the special magnetic needle. We started in Lower Canada and travelled across the line of march twenty-five miles; then advanced south one thousand feet; then back across the line of march again twenty-five miles; then south another thousand feet, across again, and so on. Thus we advanced all the way to North Carolina, varying our cross-country march from two to twenty-five miles, according to geological formation. Our magnetic