Online Book Reader

Home Category

Edison, His Life and Inventions [189]

By Root 7578 0
would again come into play, and once more speed up the rolls for a repetition of their regular prize-fighter duty.

On leaving the giant rolls the rocks, having been reduced to pieces not larger than fourteen inches, passed into the series of "Intermediate Rolls" of similar construction and operation, by which they were still further reduced, and again passed on to three other sets of rolls of smaller dimensions. These latter rolls were also face-lined with chilled-iron plates; but, unlike the larger ones, were positively driven, reducing the rock to pieces of about one-half-inch size, or smaller. The whole crushing operation of reduction from massive boulders to small pebbly pieces having been done in less time than the telling has occupied, the product was conveyed to the "Dryer," a tower nine feet square and fifty feet high, heated from below by great open furnace fires. All down the inside walls of this tower were placed cast-iron plates, nine feet long and seven inches wide, arranged alternately in "fish-ladder" fashion. The crushed rock, being delivered at the top, would fall down from plate to plate, constantly exposing different surfaces to the heat, until it landed completely dried in the lower portion of the tower, where it fell into conveyors which took it up to the stock-house.

This method of drying was original with Edison. At the time this adjunct to the plant was required, the best dryer on the market was of a rotary type, which had a capacity of only twenty tons per hour, with the expenditure of considerable power. As Edison had determined upon treating two hundred and fifty tons or more per hour, he decided to devise an entirely new type of great capacity, requiring a minimum of power (for elevating the material), and depending upon the force of gravity for handling it during the drying process. A long series of experiments resulted in the invention of the tower dryer with a capacity of three hundred tons per hour.

The rock, broken up into pieces about the size of marbles, having been dried and conveyed to the stock-house, the surplusage was automatically carried out from the other end of the stock-house by con- veyors, to pass through the next process, by which it was reduced to a powder. The machinery for accomplishing this result represents another interesting and radical departure of Edison from accepted usage. He had investigated all the crushing-machines on the market, and tried all he could get. He found them all greatly lacking in economy of operation; indeed, the highest results obtainable from the best were 18 per cent. of actual work, involving a loss of 82 per cent. by friction. His nature revolted at such an immense loss of power, especially as he proposed the crushing of vast quantities of ore. Thus, he was obliged to begin again at the foundation, and he devised a crushing-machine which was subsequently named the "Three-High Rolls," and which practically reversed the above figures, as it developed 84 per cent. of work done with only 16 per cent. loss in friction.

A brief description of this remarkable machine will probably interest the reader. In the two end pieces of a heavy iron frame were set three rolls, or cylinders --one in the centre, another below, and the other above--all three being in a vertical line. These rolls were of cast iron three feet in diameter, having chilled-iron smooth face-plates of considerable thickness. The lowest roll was set in a fixed bearing at the bottom of the frame, and, therefore, could only turn around on its axis. The middle and top rolls were free to move up or down from and toward the lower roll, and the shafts of the middle and upper rolls were set in a loose bearing which could slip up and down in the iron frame. It will be apparent, therefore, that any material which passed in between the top and the middle rolls, and the middle and bottom rolls, could be ground as fine as might be desired, depending entirely upon the amount of pressure applied to the loose rolls. In operation the material passed first through the upper and middle rolls,
Return Main Page Previous Page Next Page

®Online Book Reader