Online Book Reader

Home Category

Edison, His Life and Inventions [220]

By Root 7560 0
solution of the conductivity problem, is of itself a most interesting product, intensely practical in its application and fascinating in its manufacture. The flake of nickel is obtained by electroplating upon a metallic cylinder alternate layers of copper and nickel, one hundred of each, after which the combined sheet is stripped from the cylinder. So thin are the layers that this sheet is only about the thickness of a visiting-card, and yet it is composed of two hundred layers of metal. The sheet is cut into tiny squares, each about one-sixteenth of an inch, and these squares are put into a bath where the copper is dissolved out. This releases the layers of nickel, so that each of these small squares becomes one hundred tiny sheets, or flakes, of pure metallic nickel, so thin that when they are dried they will float in the air, like thistle-down.

In their application to the manufacture of batteries, the flakes are used through the medium of a special machine, so arranged that small charges of nickel hydrate and nickel flake are alternately fed into the pockets intended for positives, and tamped down with a pressure equal to about four tons per square inch. This insures complete and perfect contact and consequent electrical conductivity throughout the entire unit.

The development of the nickel flake contains in itself a history of patient investigation, labor, and achievement, but we have not space for it, nor for tracing the great work that has been done in developing and perfecting the numerous other parts and adjuncts of this remarkable battery. Suffice it to say that when Edison went boldly out into new territory, after something entirely unknown, he was quite prepared for hard work and exploration. He encountered both in unstinted measure, but kept on going forward until, after long travel, he had found all that he expected and accomplished something more beside. Nature DID respond to his whole- hearted appeal, and, by the time the hunt was ended, revealed a good storage battery of entirely new type. Edison not only recognized and took advantage of the principles he had discovered, but in adapting them for commercial use developed most ingenious processes and mechanical appliances for carrying his discoveries into practical effect. Indeed, it may be said that the invention of an enormous variety of new machines and mechanical appliances rendered necessary by each change during the various stages of development of the battery, from first to last, stands as a lasting tribute to the range and versatility of his powers.

It is not within the scope of this narrative to enter into any description of the relative merits of the Edison storage battery, that being the province of a commercial catalogue. It does, however, seem entirely allowable to say that while at the present writing the tests that have been made extend over a few years only, their results and the intrinsic value of this characteristic Edison invention are of such a substantial nature as to point to the inevitable growth of another great industry arising from its manufacture, and to its wide-spread application to many uses.

The principal use that Edison has had in mind for his battery is transportation of freight and passengers by truck, automobile, and street-car. The greatly increased capacity in proportion to weight of the Edison cell makes it particularly adaptable for this class of work on account of the much greater radius of travel that is possible by its use. The latter point of advantage is the one that appeals most to the automobilist, as he is thus enabled to travel, it is asserted, more than three times farther than ever before on a single charge of the battery.

Edison believes that there are important advantages possible in the employment of his storage battery for street-car propulsion. Under the present system of operation, a plant furnishing the electric power for street railways must be large enough to supply current for the maximum load during "rush hours," although much of the machinery may be lying idle and unproductive in the
Return Main Page Previous Page Next Page

®Online Book Reader