Edison, His Life and Inventions [242]
the progress of the ore-milling work at Edison, it became desirable to carry on a certain operation by some special machinery. He requested the proper person on his engineering staff to think this matter up and submit a few sketches of what he would propose to do. He brought three drawings to Edison, who examined them and said none of them would answer. The engineer remarked that it was too bad, for there was no other way to do it. Mr. Edison turned to him quickly, and said: "Do you mean to say that these drawings represent the only way to do this work?" To which he received the reply: "I certainly do." Edison said nothing. This happened on a Saturday. He followed his usual custom of spending Sunday at home in Orange. When he returned to the works on Monday morning, he took with him sketches he had made, showing FORTY-EIGHT other ways of accomplishing the desired operation, and laid them on the engineer's desk without a word. Subsequently one of these ideas, with modifications suggested by some of the others, was put into successful practice.
Difficulties seem to have a peculiar charm for Edison, whether they relate to large or small things; and although the larger matters have contributed most to the history of the arts, the same carefulness of thought has often been the means of leading to improvements of permanent advantage even in minor details. For instance, in the very earliest days of electric lighting, the safe insulation of two bare wires fastened together was a serious problem that was solved by him. An iron pot over a fire, some insulating material melted therein, and narrow strips of linen drawn through it by means of a wooden clamp, furnished a readily applied and adhesive insulation, which was just as perfect for the purpose as the regular and now well-known insulating tape, of which it was the forerunner.
Dubious results are not tolerated for a moment in Edison's experimental work. Rather than pass upon an uncertainty, the experiment will be dissected and checked minutely in order to obtain absolute knowledge, pro and con. This searching method is followed not only in chemical or other investigations, into which complexities might naturally enter, but also in more mechanical questions, where simplicity of construction might naturally seem to preclude possibilities of uncertainty. For instance, at the time when he was making strenuous endeavors to obtain copper wire of high conductivity, strict laboratory tests were made of samples sent by manufacturers. One of these samples tested out poorer than a previous lot furnished from the same factory. A report of this to Edison brought the following note: "Perhaps the ---- wire had a bad spot in it. Please cut it up into lengths and test each one and send results to me immediately." Possibly the electrical fraternity does not realize that this earnest work of Edison, twenty-eight years ago, resulted in the establishment of the high quality of copper wire that has been the recognized standard since that time. Says Edison on this point: "I furnished the expert and apparatus to the Ansonia Brass and Copper Company in 1883, and he is there yet. It was this expert and this company who pioneered high-conductivity copper for the electrical trade."
Nor is it generally appreciated in the industry that the adoption of what is now regarded as a most ob- vious proposition--the high-economy incandescent lamp--was the result of that characteristic foresight which there has been occasion to mention frequently in the course of this narrative, together with the courage and "horse-sense" which have always been displayed by the inventor in his persistent pushing out with far-reaching ideas, in the face of pessimistic opinions. As is well known, the lamps of the first ten or twelve years of incandescent lighting were of low economy, but had long life. Edison's study of the subject had led him to the conviction that the greatest growth of the electric-lighting industry would be favored by a lamp taking less current, but having shorter, though commercially economical life; and
Difficulties seem to have a peculiar charm for Edison, whether they relate to large or small things; and although the larger matters have contributed most to the history of the arts, the same carefulness of thought has often been the means of leading to improvements of permanent advantage even in minor details. For instance, in the very earliest days of electric lighting, the safe insulation of two bare wires fastened together was a serious problem that was solved by him. An iron pot over a fire, some insulating material melted therein, and narrow strips of linen drawn through it by means of a wooden clamp, furnished a readily applied and adhesive insulation, which was just as perfect for the purpose as the regular and now well-known insulating tape, of which it was the forerunner.
Dubious results are not tolerated for a moment in Edison's experimental work. Rather than pass upon an uncertainty, the experiment will be dissected and checked minutely in order to obtain absolute knowledge, pro and con. This searching method is followed not only in chemical or other investigations, into which complexities might naturally enter, but also in more mechanical questions, where simplicity of construction might naturally seem to preclude possibilities of uncertainty. For instance, at the time when he was making strenuous endeavors to obtain copper wire of high conductivity, strict laboratory tests were made of samples sent by manufacturers. One of these samples tested out poorer than a previous lot furnished from the same factory. A report of this to Edison brought the following note: "Perhaps the ---- wire had a bad spot in it. Please cut it up into lengths and test each one and send results to me immediately." Possibly the electrical fraternity does not realize that this earnest work of Edison, twenty-eight years ago, resulted in the establishment of the high quality of copper wire that has been the recognized standard since that time. Says Edison on this point: "I furnished the expert and apparatus to the Ansonia Brass and Copper Company in 1883, and he is there yet. It was this expert and this company who pioneered high-conductivity copper for the electrical trade."
Nor is it generally appreciated in the industry that the adoption of what is now regarded as a most ob- vious proposition--the high-economy incandescent lamp--was the result of that characteristic foresight which there has been occasion to mention frequently in the course of this narrative, together with the courage and "horse-sense" which have always been displayed by the inventor in his persistent pushing out with far-reaching ideas, in the face of pessimistic opinions. As is well known, the lamps of the first ten or twelve years of incandescent lighting were of low economy, but had long life. Edison's study of the subject had led him to the conviction that the greatest growth of the electric-lighting industry would be favored by a lamp taking less current, but having shorter, though commercially economical life; and