Online Book Reader

Home Category

Edison, His Life and Inventions [325]

By Root 7477 0
and pad would carry the latter with the former as it revolved, but if the friction were removed a spring on the end of the vibrator arm would draw it back to its starting-place.

In practice, the chalk drum was electrically connected with one pole of an incoming telegraph circuit, and the vibrating arm and pad with the other pole. When the drum rotated, the friction of the pad carried the vibrating arm forward, but an electrical impulse coming over the line would decompose the chemical solution with which the drum was moistened, causing an effect similar to lubrication, and thus allowing the pad to slip backward freely in response to the pull of its retractile spring. The frictional movements of the pad with the drum were comparatively long or short, and corresponded with the length of the impulses sent in over the line. Thus, the transmission of Morse dots and dashes by the distant operator resulted in movements of corresponding length by the frictional pad and vibrating arm.

This brings us to the gist of the ingenious way in which Edison substituted the action of electrochemical decomposition for that of the electromagnet to operate a relay. The actual relaying was accomplished through the medium of two contacts making connection with the local or relay circuit. One of these contacts was fixed, while the other was carried by the vibrating arm; and, as the latter made its forward and backward movements, these contacts were alternately brought together or separated, thus throwing in and out of circuit the battery and sounder in the local circuit and causing a repetition of the incoming signals. The other side of the local circuit was permanently connected to an insulated block on the vibrator. This device not only worked with great rapidity, but was extremely sensitive, and would respond to currents too weak to affect the most delicate electromagnetic relay. It should be stated that Edison did not confine himself to the working of the electromotograph by the slipping of surfaces through the action of incoming current, but by varying the character of the surfaces in contact the frictional effect might be intensified by the electrical current. In such a case the movements would be the reverse of those above indicated, but the end sought --namely, the relaying of messages--would be attained with the same certainty.

While the principal object of this invention was to accomplish the repetition of signals without the aid of an electromagnetic relay, the instrument devised by Edison was capable of use as a recorder also, by employing a small wheel inked by a fountain wheel and attached to the vibrating arm through suitable mechanism. By means of this adjunct the dashes and dots of the transmitted impulses could be recorded upon a paper ribbon passing continuously over the drum.

The electromotograph is shown diagrammatically in Figs. 1 and 2, in plan and vertical section respectively. The reference letters in each case indicate identical parts: A being the chalk drum, B the paper tape, C the auxiliary cylinder, D the vibrating arm, E the frictional pad, F the spring, G and H the two contacts, I and J the two wires leading to local circuit, K a battery, and L an ordinary telegraph key. The two last named, K and L, are shown to make the sketch complete but in practice would be at the transmitting end, which might be hundreds of miles away. It will be understood, of course, that the electromotograph is a receiving and relaying instrument.

Another notable use of the electromotograph principle was in its adaptation to the receiver in Edison's loud-speaking telephone, on which United States Patent No. 221,957 was issued November 25, 1879. A chalk cylinder moistened with a chemical solution was revolved by hand or a small motor. Resting on the cylinder was a palladium-faced pen or spring, which was attached to a mica diaphragm in a resonator. The current passed from the main line through the pen to the chalk and to the battery. The sound-waves impinging upon the distant transmitter varied the resistance of the carbon button
Return Main Page Previous Page Next Page

®Online Book Reader