Online Book Reader

Home Category

Edison, His Life and Inventions [328]

By Root 7522 0
did produce speech with solid electrodes before Berliner is clearly proven.... The use of carbon in a transmitter is, beyond controversy, the invention of Edison. Edison was the first to make apparatus in which carbon was used as one of the electrodes.... The carbon transmitter displaced Bell's magnetic transmitter, and, under several forms of construction, remains the only commercial instrument.... The advance in the art was due to the carbon electrode of Edison.... It is conceded that the Edison transmitter as apparatus is a very important invention.... An immense amount of painstaking and highly ingenious experiment preceded Edison's successful result. The discovery of the availability of carbon was unquestionably invention, and it resulted in the `first practical success in the art.' "



VII

EDISON'S TASIMETER

THIS interesting and remarkable device is one of Edison's many inventions not generally known to the public at large, chiefly because the range of its application has been limited to the higher branches of science. He never applied for a patent on the instrument, but dedicated it to the public.

The device was primarily intended for use in detecting and measuring infinitesimal degrees of temperature, however remote, and its conception followed Edison's researches on the carbon telephone transmitter. Its principle depends upon the variable resistance of carbon in accordance with the degree of pressure to which it is subjected. By means of this instrument, pressures that are otherwise inappreciable and undiscoverable may be observed and indicated.

The detection of small variations of temperatures is brought about through the changes which heat or cold will produce in a sensitive material placed in contact with a carbon button, which is put in circuit with a battery and delicate galvanometer. In the sketch (Fig. 1) there is illustrated, partly in section, the form of tasimeter which Edison took with him to Rawlins, Wyoming, in July, 1878, on the expedition to observe the total eclipse of the sun.

The substance on whose expansion the working of the instrument depends is a strip of some material extremely sensitive to heat, such as vulcanite. shown at A, and firmly clamped at B. Its lower end fits into a slot in a metal plate, C, which in turn rests upon a carbon button. This latter and the metal plate are connected in an electric circuit which includes a battery and a sensitive galvanometer. A vulcanite or other strip is easily affected by differences of temperature, expanding and contracting by reason of the minutest changes. Thus, an infinitesimal variation in its length through expansion or contraction changes the press- ure on the carbon and affects the resistance of the circuit to a corresponding degree, thereby causing a deflection of the galvanometer; a movement of the needle in one direction denoting expansion, and in the other contraction. The strip, A, is first put under a slight pressure, deflecting the needle a few degrees from zero. Any subsequent expansion or contraction of the strip may readily be noted by further movements of the needle. In practice, and for measurements of a very delicate nature, the tasimeter is inserted in one arm of a Wheatstone bridge, as shown at A in the diagram (Fig. 2). The galvanometer is shown at B in the bridge wire, and at C, D, and E there are shown the resistances in the other arms of the bridge, which are adjusted to equal the resistance of the tasimeter circuit. The battery is shown at F. This arrangement tends to obviate any misleading deflections that might arise through changes in the battery.

The dial on the front of the instrument is intended to indicate the exact amount of physical expansion or contraction of the strip. This is ascertained by means of a micrometer screw, S, which moves a needle, T, in front of the dial. This screw engages with a second and similar screw which is so arranged as to move the strip of vulcanite up or down. After a galvanometer deflection has been obtained through the expansion or contraction of the strip by reason
Return Main Page Previous Page Next Page

®Online Book Reader