Edison, His Life and Inventions [344]
a primitive system of distribution, such as that shown by Fig. 1, the initial voltage would have to be so high, in order to obtain the proper candle-power at the end of the circuit, that the lamps nearest the generator would be dangerously overheated. It might be suggested as a solution of this problem that lamps of different voltages could be used. But, as we are considering systems of extended distribution employing vast numbers of lamps (as in New York City, where millions are in use), it will be seen that such a method would lead to inextricable confusion, and therefore be absolutely out of the question. Inasmuch as the percentage of drop decreases in proportion to the increased cross-section of the conductors, the only feasible plan would seem to be to increase their size to such dimensions as to eliminate the drop altogether, beginning with conductors of large cross-section and tapering off as necessary. This would, indeed, obviate the trouble, but, on the other hand, would give rise to a much more serious difficulty-- namely, the enormous outlay for copper; an outlay so great as to be absolutely prohibitory in considering the electric lighting of large districts, as now practiced.
Another diagram will probably make this more clear. The reference figures are used as before, except that the horizontal lines extending from square marked G represent the main conductors. As each lamp requires and takes its own proportion of the total current generated, it is obvious that the size of the conductors to carry the current for a number of lamps must be as large as the sum of ALL the separate conductors which would be required to carry the necessary amount of current to each lamp separately. Hence, in a primitive multiple-arc system, it was found that the system must have conductors of a size equal to the aggregate of the individual conductors necessary for every lamp. Such conductors might either be separate, as shown above (Fig. 2), or be bunched together, or made into a solid tapering conductor, as shown in the following figure:
The enormous mass of copper needed in such a system can be better appreciated by a concrete example. Some years ago Mr. W. J. Jenks made a comparative calculation which showed that such a system of conductors (known as the "Tree" system), to supply 8640 lamps in a territory extending over so small an area as nine city blocks, would require 803,250 pounds of copper, which at the then price of 25 cents per pound would cost $200,812.50!
Such, in brief, was the state of the art, generally speaking, at the period above named (1878-79). As early in the art as the latter end of the year 1878, Edison had developed his ideas sufficiently to determine that the problem of electric illumination by small units could be solved by using incandescent lamps of high resistance and small radiating surface, and by distributing currents of constant potential thereto in multiple arc by means of a ramification of conductors, starting from a central source and branching therefrom in every direction. This was an equivalent of the method illustrated in Fig. 3, known as the "Tree" system, and was, in fact, the system used by Edison in the first and famous exhibition of his electric light at Menlo Park around the Christmas period of 1879. He realized, however, that the enormous investment for copper would militate against the commercial adoption of electric lighting on an extended scale. His next inventive step covered the division of a large city district into a number of small sub-stations supplying current through an interconnected network of conductors, thus reducing expenditure for copper to some extent, because each distribution unit was small and limited the drop.
His next development was the radical advancement of the state of the art to the feeder system, covered by the patent now under discussion. This invention swept away the tree and other systems, and at one bound brought into being the possibility of effectively distributing large currents over extended areas with a commercially reasonable investment
Another diagram will probably make this more clear. The reference figures are used as before, except that the horizontal lines extending from square marked G represent the main conductors. As each lamp requires and takes its own proportion of the total current generated, it is obvious that the size of the conductors to carry the current for a number of lamps must be as large as the sum of ALL the separate conductors which would be required to carry the necessary amount of current to each lamp separately. Hence, in a primitive multiple-arc system, it was found that the system must have conductors of a size equal to the aggregate of the individual conductors necessary for every lamp. Such conductors might either be separate, as shown above (Fig. 2), or be bunched together, or made into a solid tapering conductor, as shown in the following figure:
The enormous mass of copper needed in such a system can be better appreciated by a concrete example. Some years ago Mr. W. J. Jenks made a comparative calculation which showed that such a system of conductors (known as the "Tree" system), to supply 8640 lamps in a territory extending over so small an area as nine city blocks, would require 803,250 pounds of copper, which at the then price of 25 cents per pound would cost $200,812.50!
Such, in brief, was the state of the art, generally speaking, at the period above named (1878-79). As early in the art as the latter end of the year 1878, Edison had developed his ideas sufficiently to determine that the problem of electric illumination by small units could be solved by using incandescent lamps of high resistance and small radiating surface, and by distributing currents of constant potential thereto in multiple arc by means of a ramification of conductors, starting from a central source and branching therefrom in every direction. This was an equivalent of the method illustrated in Fig. 3, known as the "Tree" system, and was, in fact, the system used by Edison in the first and famous exhibition of his electric light at Menlo Park around the Christmas period of 1879. He realized, however, that the enormous investment for copper would militate against the commercial adoption of electric lighting on an extended scale. His next inventive step covered the division of a large city district into a number of small sub-stations supplying current through an interconnected network of conductors, thus reducing expenditure for copper to some extent, because each distribution unit was small and limited the drop.
His next development was the radical advancement of the state of the art to the feeder system, covered by the patent now under discussion. This invention swept away the tree and other systems, and at one bound brought into being the possibility of effectively distributing large currents over extended areas with a commercially reasonable investment