Online Book Reader

Home Category

Edison, His Life and Inventions [99]

By Root 7641 0
the same area by lamps of the earlier experimenters --such, for instance, as the lamp invented by Konn in 1875. This enormous difference would be accounted for by the fact that Edison's lamp was one having a high resistance and relatively small radiating surface, while Konn's lamp was one having a very low resistance and large radiating surface.



Continuing the digression one step farther in order to explain the term "multiple arc," it may be stated that there are two principal systems of distributing electric current, one termed "series," and the other "multiple arc." The two are illustrated, diagrammatically, side by side, the arrows indicating flow of current. The series system, it will be seen, presents one continuous path for the current. The current for the last lamp must pass through the first and all the intermediate lamps. Hence, if any one light goes out, the continuity of the path is broken, current cannot flow, and all the lamps are extinguished unless a loop or by-path is provided. It is quite obvious that such a system would be commercially impracticable where small units, similar to gas jets, were employed. On the other hand, in the multiple-arc system, current may be considered as flowing in two parallel conductors like the vertical sides of a ladder, the ends of which never come together. Each lamp is placed in a separate circuit across these two conductors, like a rung in the ladder, thus making a separate and independent path for the current in each case. Hence, if a lamp goes out, only that individual subdivision, or ladder step, is affected; just that one particular path for the current is interrupted, but none of the other lamps is interfered with. They remain lighted, each one independent of the other. The reader will quite readily understand, therefore, that a multiple-arc system is the only one practically commercial where electric light is to be used in small units like those of gas or oil.

Such was the nature of the problem that confronted Edison at the outset. There was nothing in the whole world that in any way approximated a solution, although the most brilliant minds in the electrical art had been assiduously working on the subject for a quarter of a century preceding. As already seen, he came early to the conclusion that the only solution lay in the use of a lamp of high resistance and small radiating surface, and, with characteristic fervor and energy, he attacked the problem from this standpoint, having absolute faith in a successful outcome. The mere fact that even with the successful production of the electric lamp the assault on the complete problem of commercial lighting would hardly be begun did not deter him in the slightest. To one of Edison's enthusiastic self-confidence the long vista of difficulties ahead--we say it in all sincerity-- must have been alluring.

After having devoted several months to experimental trials of carbon, at the end of 1878, as already detailed, he turned his attention to the platinum group of metals and began a series of experiments in which he used chiefly platinum wire and iridium wire, and alloys of refractory metals in the form of wire burners for incandescent lamps. These metals have very high fusing-points, and were found to last longer than the carbon strips previously used when heated up to incandescence by the electric current, although under such conditions as were then possible they were melted by excess of current after they had been lighted a comparatively short time, either in the open air or in such a vacuum as could be obtained by means of the ordinary air-pump.

Nevertheless, Edison continued along this line of experiment with unremitting vigor, making improvement after improvement, until about April, 1879, he devised a means whereby platinum wire of a given length, which would melt in the open air when giving a light equal to four candles, would emit a light of twenty-five candle-power without fusion. This was accomplished by introducing the platinum wire into an all-glass globe, completely sealed and highly exhausted of air,
Return Main Page Previous Page Next Page

®Online Book Reader