Online Book Reader

Home Category

Faraday As A Discoverer [5]

By Root 1229 0
subsequently received his closer attention--the vaporization of mercury at common temperatures; and immediately afterwards conducted, in company with Mr. Stodart, experiments on the alloys of steel. He was accustomed in after years to present to his friends razors formed from one of the alloys then discovered. During Faraday's hours of liberty from other duties, he took up subjects of inquiry for himself; and in the spring of 1823, thus self-prompted, he began the examination of a substance which had long been regarded as the chemical element chlorine, in a solid form, but which Sir Humphry Davy, in 1810, had proved to be a hydrate of chlorine, that is, a compound of chlorine and water. Faraday first analysed this hydrate, and wrote out an account of its composition. This account was looked over by Davy, who suggested the heating of the hydrate under pressure in a sealed glass tube. This was done. The hydrate fused at a blood-heat, the tube became filled with a yellow atmosphere, and was afterwards found to contain two liquid substances. Dr. Paris happened to enter the laboratory while Faraday was at work. Seeing the oily liquid in his tube, he rallied the young chemist for his carelessness in employing soiled vessels. On filing off the end of the tube, its contents exploded and the oily matter vanished. Early next morning, Dr. Paris received the following note:-- 'Dear Sir,--The oil you noticed yesterday turns out to be liquid chlorine. 'Yours faithfully, 'M. Faraday.'[2] The gas had been liquefied by its own pressure. Faraday then tried compression with a syringe, and succeeded thus in liquefying the gas. To the published account of this experiment Davy added the following note:--'In desiring Mr. Faraday to expose the hydrate of chlorine in a closed glass tube, it occurred to me that one of three things would happen: that decomposition of water would occur;... or that the chlorine would separate in a fluid state.' Davy, moreover, immediately applied the method of self-compressing atmosphere to the liquefaction of muriatic gas. Faraday continued the experiments, and succeeded in reducing a number of gases till then deemed permanent to the liquid condition. In 1844 he returned to the subject, and considerably expanded its limits. These important investigations established the fact that gases are but the vapours of liquids possessing a very low boiling-point, and gave a sure basis to our views of molecular aggregation. The account of the first investigation was read before the Royal Society on April 10, 1823, and was published, in Faraday's name, in the 'Philosophical Transactions.' The second memoir was sent to the Royal Society on December 19, 1844. I may add that while he was conducting his first experiments on the liquefaction of gases, thirteen pieces of glass were on one occasion driven by an explosion into Faraday's eye. Some small notices and papers, including the observation that glass readily changes colour in sunlight, follow here. In 1825 and 1826 Faraday published papers in the 'Philosophical Transactions' on 'new compounds of carbon and hydrogen,' and on 'sulphonaphthalic acid.' In the former of these papers he announced the discovery of Benzol, which, in the hands of modern chemists, has become the foundation of our splendid aniline dyes. But he swerved incessantly from chemistry into physics; and in 1826 we find him engaged in investigating the limits of vaporization, and showing, by exceedingly strong and apparently conclusive arguments, that even in the case of mercury such a limit exists; much more he conceived it to be certain that our atmosphere does not contain the vapour of the fixed constituents of the earth's crust. This question, I may say, is likely to remain an open one. Dr. Rankine, for example, has lately drawn attention to the odour of certain metals; whence comes this odour, if it be not from the vapour of the metal? In 1825 Faraday became a member of a committee, to which Sir John Herschel and Mr. Dollond also belonged, appointed by the Royal Society to examine, and if possible
Return Main Page Previous Page Next Page

®Online Book Reader