Great Astronomers [129]
into the motion of the moon. Thus he ascertained, or at all events thought he had ascertained, that the acceleration of the moon's motion, as it had been inferred from the observations of the ancient eclipses which have been handed down to us, could be completely accounted for as a consequence of planetary perturbation. This was regarded as a great scientific triumph. Our belief in the universality of the law of gravitation would, in fact, have been seriously challenged unless some explanation of the lunar acceleration had been forthcoming. For about fifty years no one questioned the truth of Laplace's investigation. When a mathematician of his eminence had rendered an explanation of the remarkable facts of observation which seemed so complete, it is not surprising that there should have been but little temptation to doubt it. On undertaking a new calculation of the same question, Professor Adams found that Laplace had not pursued this approximation sufficiently far, and that consequently there was a considerable error in the result of his analysis. Adams, it must be observed, did not impugn the value of the lunar acceleration which Halley had deduced from the observations, but what he did show was, that the calculation by which Laplace thought he had provided an explanation of this acceleration was erroneous. Adams, in fact, proved that the planetary influence which Laplace had detected only possessed about half the efficiency which the great French mathematician had attributed to it. There were not wanting illustrious mathematicians who came forward to defend the calculations of Laplace. They computed the question anew and arrived at results practically coincident with those he had given. On the other hand certain distinguished mathematicians at home and abroad verified the results of Adams. The issue was merely a mathematical one. It had only one correct solution. Gradually it appeared that those who opposed Adams presented a number of different solutions, all of them discordant with his, and, usually, discordant with each other. Adams showed distinctly where each of these investigators had fallen into error, and at last it became universally admitted that the Cambridge Professor had corrected Laplace in a very fundamental point of astronomical theory.
Though it was desirable to have learned the truth, yet the breach between observation and calculation which Laplace was believed to have closed thus became reopened. Laplace's investigation, had it been correct, would have exactly explained the observed facts. It was, however, now shown that his solution was not correct, and that the lunar acceleration, when strictly calculated as a consequence of solar perturbations, only produced about half the effect which was wanted to explain the ancient eclipses completely. It now seems certain that there is no means of accounting for the lunar acceleration as a direct consequence of the laws of gravitation, if we suppose, as we have been in the habit of supposing, that the members of the solar system concerned may be regarded as rigid particles. It has, however, been suggested that another explanation of a very interesting kind may be forthcoming, and this we must endeavour to set forth.
It will be remembered that we have to explain why the period of revolution of the moon is now shorter than it used to be. If we imagine the length of the period to be expressed in terms of days and fractions of a day, that is to say, in terms of the rotations of the earth around its axis, then the difficulty encountered is, that the moon now requires for each of its revolutions around the earth rather a smaller number of rotations of the earth around its axis than used formerly to be the case. Of course this may be explained by the fact that the moon is now moving more swiftly than of yore, but it is obvious that an explanation of quite a different kind might be conceivable. The moon may be moving just at the same pace as ever, but the length of the day may be increasing. If the length of the day is increasing, then,
Though it was desirable to have learned the truth, yet the breach between observation and calculation which Laplace was believed to have closed thus became reopened. Laplace's investigation, had it been correct, would have exactly explained the observed facts. It was, however, now shown that his solution was not correct, and that the lunar acceleration, when strictly calculated as a consequence of solar perturbations, only produced about half the effect which was wanted to explain the ancient eclipses completely. It now seems certain that there is no means of accounting for the lunar acceleration as a direct consequence of the laws of gravitation, if we suppose, as we have been in the habit of supposing, that the members of the solar system concerned may be regarded as rigid particles. It has, however, been suggested that another explanation of a very interesting kind may be forthcoming, and this we must endeavour to set forth.
It will be remembered that we have to explain why the period of revolution of the moon is now shorter than it used to be. If we imagine the length of the period to be expressed in terms of days and fractions of a day, that is to say, in terms of the rotations of the earth around its axis, then the difficulty encountered is, that the moon now requires for each of its revolutions around the earth rather a smaller number of rotations of the earth around its axis than used formerly to be the case. Of course this may be explained by the fact that the moon is now moving more swiftly than of yore, but it is obvious that an explanation of quite a different kind might be conceivable. The moon may be moving just at the same pace as ever, but the length of the day may be increasing. If the length of the day is increasing, then,