Heroes of the Telegraph [10]
Wheatstone of stealing his idea of the electro-magnetic printing telegraph; but Wheatstone showed that the instrument was only a modification of his own electro-magnetic telegraph.
In 1843 Wheatstone communicated an important paper to the Royal Society, entitled 'An Account of Several New Processes for Determining the Constants of a Voltaic Circuit.' It contained an exposition of the well- known balance for measuring the electrical resistance of a conductor, which still goes by the name of Wheatstone's Bridge or balance, although it was first devised by Mr. S. W. Christie, of the Royal Military Academy, Woolwich, who published it in the PHILOSOPHICAL TRANSACTIONS for 1833. The method was neglected until Wheatstone brought it into notice. His paper abounds with simple and practical formula: for the calculation of currents and resistances by the law of Ohm. He introduced a unit of resistance, namely, a foot of copper wire weighing one hundred grains, and showed how it might be applied to measure the length of wire by its resistance. He was awarded a medal for his paper by the Society. The same year he invented an apparatus which enabled the reading of a thermometer or a barometer to be registered at a distance by means of an electric contact made by the mercury. A sound telegraph, in which the signals were given by the strokes of a bell, was also patented by Cooke and Wheatstone in May of that year.
The introduction of the telegraph had so far advanced that, on September 2, 1845, the Electric Telegraph Company was registered, and Wheatstone, by his deed of partnership with Cooke, received a sum of L33,000 for the use of their joint inventions.
>From 1836-7 Wheatstone had thought a good deal about submarine telegraphs, and in 1840 he gave evidence before the Railway Committee of the House of Commons on the feasibility of the proposed line from Dover to Calais. He had even designed the machinery for making and laying the cable. In the autumn of 1844, with the assistance of Mr. J. D. Llewellyn, he submerged a length of insulated wire in Swansea Bay, and signalled through it from a boat to the Mumbles Lighthouse. Next year he suggested the use of gutta-percha for the coating of the intended wire across the Channel.
Though silent and reserved in public, Wheatstone was a clear and voluble talker in private, if taken on his favourite studies, and his small but active person, his plain but intelligent countenance, was full of animation. Sir Henry Taylor tells us that he once observed Wheatstone at an evening party in Oxford earnestly holding forth to Lord Palmerston on the capabilities of his telegraph. 'You don't say so!' exclaimed the statesman. 'I must get you to tell that to the Lord Chancellor.' And so saying, he fastened the electrician on Lord Westbury, and effected his escape. A reminiscence of this interview may have prompted Palmerston to remark that a time was coming when a minister might be asked in Parliament if war had broken out in India, and would reply, 'Wait a minute; I'll just telegraph to the Governor-General, and let you know.'
At Christchurch, Marylebone, on February 12, 1847, Wheatstone was married. His wife was the daughter of a Taunton tradesman, and of handsome appearance. She died in 1866, leaving a family of five young children to his care. His domestic life was quiet and uneventful.
One of Wheatstone's most ingenious devices was the 'Polar clock,' exhibited at the meeting of the British Association in 1848. It is based on the fact discovered by Sir David Brewster, that the light of the sky is polarised in a plane at an angle of ninety degrees from the position of the sun. It follows that by discovering that plane of polarisation, and measuring its azimuth with respect to the north, the position of the sun, although beneath the horizon, could be determined, and the apparent solar time obtained. The clock consisted of a spy- glass, having a nichol or double-image prism for an eye-piece, and a thin plate of selenite for an object-glass. When the tube was directed to the
In 1843 Wheatstone communicated an important paper to the Royal Society, entitled 'An Account of Several New Processes for Determining the Constants of a Voltaic Circuit.' It contained an exposition of the well- known balance for measuring the electrical resistance of a conductor, which still goes by the name of Wheatstone's Bridge or balance, although it was first devised by Mr. S. W. Christie, of the Royal Military Academy, Woolwich, who published it in the PHILOSOPHICAL TRANSACTIONS for 1833. The method was neglected until Wheatstone brought it into notice. His paper abounds with simple and practical formula: for the calculation of currents and resistances by the law of Ohm. He introduced a unit of resistance, namely, a foot of copper wire weighing one hundred grains, and showed how it might be applied to measure the length of wire by its resistance. He was awarded a medal for his paper by the Society. The same year he invented an apparatus which enabled the reading of a thermometer or a barometer to be registered at a distance by means of an electric contact made by the mercury. A sound telegraph, in which the signals were given by the strokes of a bell, was also patented by Cooke and Wheatstone in May of that year.
The introduction of the telegraph had so far advanced that, on September 2, 1845, the Electric Telegraph Company was registered, and Wheatstone, by his deed of partnership with Cooke, received a sum of L33,000 for the use of their joint inventions.
>From 1836-7 Wheatstone had thought a good deal about submarine telegraphs, and in 1840 he gave evidence before the Railway Committee of the House of Commons on the feasibility of the proposed line from Dover to Calais. He had even designed the machinery for making and laying the cable. In the autumn of 1844, with the assistance of Mr. J. D. Llewellyn, he submerged a length of insulated wire in Swansea Bay, and signalled through it from a boat to the Mumbles Lighthouse. Next year he suggested the use of gutta-percha for the coating of the intended wire across the Channel.
Though silent and reserved in public, Wheatstone was a clear and voluble talker in private, if taken on his favourite studies, and his small but active person, his plain but intelligent countenance, was full of animation. Sir Henry Taylor tells us that he once observed Wheatstone at an evening party in Oxford earnestly holding forth to Lord Palmerston on the capabilities of his telegraph. 'You don't say so!' exclaimed the statesman. 'I must get you to tell that to the Lord Chancellor.' And so saying, he fastened the electrician on Lord Westbury, and effected his escape. A reminiscence of this interview may have prompted Palmerston to remark that a time was coming when a minister might be asked in Parliament if war had broken out in India, and would reply, 'Wait a minute; I'll just telegraph to the Governor-General, and let you know.'
At Christchurch, Marylebone, on February 12, 1847, Wheatstone was married. His wife was the daughter of a Taunton tradesman, and of handsome appearance. She died in 1866, leaving a family of five young children to his care. His domestic life was quiet and uneventful.
One of Wheatstone's most ingenious devices was the 'Polar clock,' exhibited at the meeting of the British Association in 1848. It is based on the fact discovered by Sir David Brewster, that the light of the sky is polarised in a plane at an angle of ninety degrees from the position of the sun. It follows that by discovering that plane of polarisation, and measuring its azimuth with respect to the north, the position of the sun, although beneath the horizon, could be determined, and the apparent solar time obtained. The clock consisted of a spy- glass, having a nichol or double-image prism for an eye-piece, and a thin plate of selenite for an object-glass. When the tube was directed to the