Hiroshima_ The World's Bomb - Andrew J. Rotter [15]
This was bold justification of weapons’ work, and probably believable on some level to those who advanced it. But most men cannot read about the results of their research crippling and killing other men without feeling remorse. Otto Hahn, who, unusually for a scientist, came face to face with Russian victims of a gas attack, confessed to feeling shame for his role in their deaths, but in the end ascribed them to ‘the senselessness of war’, not to human agency (and certainly not to his own). His boss, Fritz Haber, was confronted by his chemist wife, Clara, about the ‘barbarism’ of poison gas; it was, she insisted, ‘a perversion of science’. Not so, Haber remonstrated, rehashing arguments he had used earlier with Hahn. The night after their argument, Clara Haber took her life. After the war, Hahn related, Haber feared trial as a war criminal. He dropped out of sight for a while, then reappeared having grown a beard, in the hope of avoiding recognition.
There are many ways in which the development of chemical weapons differed significantly from the manufacture of an atomic bomb. The chemistry of gas was easier to master than the physics of the nucleus. Gas carries no powerful blast or searing fire, it is fickle when it is blown or burst into the air, and most of all it can be protected against, provided a targeted group has adequate notice and equipment. But the similarities between chemicals and nuclear weapons are sufficiently arresting to justify the lengthy consideration of gas offered here. Chemicals and atom bombs were in their times new weapons, understood by those who made them as things unprecedented and possibly decisive in war. Both chemicals and chain-reacting neutrons put weapons into a sinister dimension virtually beyond sight and sound: in trenches men blundered into undetectable pockets of gas, while radiation (following a blast that Hiroshimans, of course, saw and heard) worked its deadly way undetected into people who had apparently escaped harm. And both weapons, even in their preparation, killed scientists hideously, much as they would kill many others with their use on battlefields and over cities. In December 1914, Dr Otto Sackur, an associate of Fritz Haber, died when a tear-gas compound he was working on exploded. Marie Sklowdowska Curie, discoverer of the radioactive elements polonium and radium, died in 1934 of leukemia. She was by then nearly blind, and her fingers were twisted and burned from the radiation to which she had exposed herself in the laboratory. Sackur and Curie were early casualties of weapons once fanciful, then dreadful, and harbingers of far greater harm that would be visited on the world.26
5. Scientists and states: the Soviet Union and the United States
There is one more way in which gas production resembled the making of the atomic bomb: both enterprises called academic science into wartime service to the state, on an enormous scale and in several countries at once. This observation raises the important question of how, or whether, the scientific republic can survive the harnessing of science to a nation’s foray into war. Scientists need cooperation to do their work. They also need the freedom to pursue mysteries, wherever they might reside, and without regard for the possible political consequences of their discoveries. The mythical scientist is both sustained by colleagues and freed by the beneficence of the scientific republic. In the lab he seeks only truth. Values, in theory, do not interest the scientist, nor do political agendas, righteous or unrighteous causes, or the concerns of statesmen