Hiroshima_ The World's Bomb - Andrew J. Rotter [23]
Moonshine, and yet powerful explosions, the prospect of cities destroyed by atomic bombs: denial offset by scientific curiosity and the possibility that the work of physicists like him might bring the world to catastrophe or triumph. There were great scientific brains in the Soviet Union during the 1930s. In the Berlin suburb of Dahlem the Kaiser Wilhelm Institute housed Szilard’s brilliant teachers, and Gottingen remained the destination of choice for the brightest young minds in international physics. France had Frederic Joliot and Irene Curie, Denmark Niels Bohr, and Japan Yoshio Nishina. Despite the ravages of the Great Depression, the United States had potentially the greatest number of human and financial resources in physics. Yet Szilard had come and would later return to Great Britain, now home to Rutherford, James Chadwick, and Frederick Soddy. Many others would join him. Britain would become during the 1930s a place of remarkable scientific fertility, congenial home to a combination of soundly practical lab work and the grandly apocalyptic and finally resurrectionary vision of H. G. Wells.
Physics returned quickly to international status following the First World War. During the 1920s, one prominent physicist likened his professional colleagues to a colony of ants: individual ants carried new particles of information into the anthill, but when they turned away their fragments were snatched up and moved elsewhere by other ants eager to add new information to their own (mutable) piles of knowledge. The ants moved so often and so quickly that it was difficult to follow them. Charles Weiner has called this activity a ‘traveling seminar’, in which physicists drawn by conferences or long-term fellowships shuttled between Brussels, Copenhagen, Rome, Paris, Leipzig, New York, and Cambridge. The Italians were peripatetic: Emilio Segre spent time in Hamburg and Amsterdam, Franco Rasetti visited Lise Meitner in Berlin and Robert Millikan in Pasadena, Enrico Fermi taught in Ann Arbor. (All three men eventually settled in the United States. Segre and Fermi worked on the Manhattan Project, Rasetti refused to do so.) Hans Bethe joined the traveling seminar with a Rockefeller Foundation fellowship and went to Rome and Cambridge. He began his teaching career at Tubingen, went to Manchester then Bristol, and, in 1935, found a permanent position at Cornell University. Most nuclear physicists were similarly wide ranging.4
The Cavendish Lab, writes Weiner, was the physicists’ Mecca in the 1920s and 1930s. The best in the field were pulled there to visit, including Albert Einstein, Bohr, Werner Heisenberg, Nishina, and George Gamow They came to work with Rutherford, of course. But the Cavendish also had the finest instruments in the world. Rutherford himself was by nature frugal, and before 1919 the lab had never exceeded £550 annually in expenditure for apparatus. That figure increased decisively into the 1930s. A variety of wealthy men contributed to the lab, but ultimately the growing needs of the scientists studying the nucleus outstripped private means, and the lab came to rely on assistance from the state. The British government was generous, so the Cavendish stayed ahead of its rivals.
The visitors also came to Cambridge to work with the lab’s staff scientists. Rutherford drew to the Cavendish men of extraordinary talent— innovative, painstaking in their methods, and adept with their newfangled instruments. ‘His boys,’ he called them. ‘Having no son himself,’ notes Robert Jungk, ‘he lavished all the vigilance, help, and affection he had to give on these aspiring young men.’ They included