Hiroshima_ The World's Bomb - Andrew J. Rotter [41]
Several days later, back in Brussels, Sengier heard much the same warning from Joliot. At that point, worried, he packed the Oolen ore, over 1,200 tons worth, into 2,000 steel drums marked ‘Uranium Ore, Product of the Belgian Congo’, trucked it to port at Antwerp, and placed it on two ships bound for Staten Island, New York. Sengier then tried several times without success to interest the Americans in the ore. (On 18 September 1942, the day after General Leslie Groves took charge of the US atomic bomb project, Groves’s deputy, Kenneth Nichols, found Sengier at Union Miniere’s New York City office. ‘I’ve been waiting for you to come,’ Sengier told Nichols. If the Americans wanted his uranium, they could have it. Nichols and Sengier scribbled an agreement on a piece of paper—the ore was sold for the low price of $1.60 per pound—and within the week it was on its way to American laboratories.7)
Thus did the raw material for a possible atomic bomb come into the hands of Germany, Great Britain, and the United States. To some extent, heavy water and especially uranium followed the best-equipped physics labs and physicists imaginative enough to use them. But not entirely, for Niels Bohr’s small country had no uranium, and the Soviet Union at first appeared to lack the ore that Peter Kapitsa and his colleagues might have put to use. Neither did the Japanese have a source of uranium, even as their scientists experimented with fission and their military spread Japanese authority over the East Asian mainland. Whether Japan would have been able to build atomic bombs had it found a Chinese Joachimsthal or a Malayan Shinkolobwe will always remain a matter for speculation; Germany, after all, had uranium and heavy water but did not, as we shall see, come close to making a bomb. There were in fact many reasons why the Japanese failed to acquire an atomic bomb. The story of the Japanese nuclear project is a tale of a road not taken, or several roads, with critical implications for the world during the 1940s and after.8
3. Japan’s nuclear projects
Japan certainly had able physicists before the Second World War. Yoshio Nishina had worked with Rutherford at the Cavendish and Bohr in Copenhagen for five years during the 1920s, and he was friendly with Ernest Lawrence of the University of California, who advised Nishina on the building of a Japanese cyclotron—a particle accelerator—in 1937 and provided the machine with a 60-inch magnet. Nagaoka Hantaro anticipated by several years Rutherford’s description of a ‘Saturnian’ atom, and Hideki Yukawa predicted an atomic particle called a meson—much heavier than an electron and a carrier of nuclear strong force—in 1934. By that time, the Institute of Physical and Chemical Research, called the Riken, had been open in Tokyo for nearly two decades. Like the Europeans and Americans, the Japanese had been convinced by the experience of the First World War that science must be supported by the government if their nation was to compete economically with the West. Nishina started the Nuclear Research Lab at Riken in 1935. His younger colleagues called him Oyabun, the old man, though he was a sprightly 52. An admirer of the West, Nishina kept Webster’s International Dictionary on a stand near his desk so he could polish his English.9
Japanese physicists also