Online Book Reader

Home Category

Hiroshima_ The World's Bomb - Andrew J. Rotter [59]

By Root 1224 0
likely that enough uranium 235 might be refined, as researchers at Columbia University (John Dunning and Harold Urey) were reporting success with gaseous diffusion, of the type that tempted and beguiled the Germans. Above all, said Lawrence, it was essential now to move forward quickly, because the Nazis were without doubt pushing ahead with a bomb-building program of their own. ‘If they succeeded first,’ Compton recalled Lawrence saying, ‘they would have in their hands the control of the world.’

Conant went next, and appeared to resist Lawrence’s logic. With war seemingly imminent—the Americans and Germans were shooting at each other in the North Atlantic, and negotiations with the Japanese in Asia were at a standstill—the scientific community must not waste its time chasing nuclear ghosts. It made better sense, he said, to focus on projects in the realm of the plausible, those that extended known truths and existing knowledge rather than those as yet sustained only by bold theory. Though neither Compton nor Lawrence knew it, Conant was in fact already convinced that an atomic bomb could be built. Having been to England, he was, of course, aware of the Frisch-Peierls memorandum and the MAUD Committee report. Several months before, Conant’s Harvard chemistry colleague George Kistiakowsky, having come, like Lawrence, to the idea of a nuclear explosive through an interest in medical radiation, concluded that an atomic bomb might be feasible. ‘It can be made to work,’ Kistiakowsky told Conant in June 1941. ‘I am one hundred percent sold.’ Trusting the British and the man he called ‘Kisty’, Conant was now fully sold too. In September he wanted only to hear Arthur Compton make his own case for the bomb, and he wanted to hear Ernest Lawrence say that he would play a leading role in its development.

That is what he got. Compton made a spirited argument for pressing ahead, rehearsing Lawrence’s contentions and emphasizing particularly the need to beat the Nazis. Conant turned to Lawrence. ‘Ernest,’ he said, ‘you say you are convinced of the importance of these fission bombs. Are you ready to devote the next several years of your life to getting them made?’ Peter Wyden has Lawrence sitting up ‘with a start’ at this, his eyes glazing, his mouth dropping open. Perhaps. He replied: ‘If you tell me this is my job, I’ll do it.’ It was decided. Lawrence would return to Berkeley and continue work on plutonium and uranium separation. Compton’s NAS Committee would add chemists and engineers to its roster of physicists. Conant would contact Vannevar Bush at the OSRD and ask him to alert ‘the highest levels’ of the Roosevelt administration to the scientists’ new interest in the bomb.

Obligingly, and momentously, Bush met Franklin Roosevelt and Vice President Henry Wallace on 9 October. They decided to replace Briggs’s sleepy Uranium Committee, constituted as a result of the Hungarians’ importunities concerning atomic power nearly two years earlier, with a high-level group that was to ‘advise the president on questions of policy relating to the study of nuclear fission’. That committee included Bush, Conant, Secretary of War Henry L. Stimson, Chief of Staff George C. Marshall, and Wallace, who had a mind for science and would thus serve as Roosevelt’s liaison to the group. The committee was called Section-1 of the OSRD, and it would ultimately give its innocuous initials (S-i) to the bomb project itself.10

There seems about these decisions, in retrospect anyway, an aura of inevitability. After all, with the descent into the Second World War by the European nations in September 1939, the United States was uniquely positioned to move forward on a bomb project. It had the world’s largest collection of first-rate scientists, their ranks having been swelled by the arrival of refugees direct from Central Europe or by way of Great Britain. While the depression lingered, not fully tamed by Roosevelt’s New Deal, physics had recovered from the worst of its problems and was entering an era of sophisticated machines and ambitious projects both theoretical

Return Main Page Previous Page Next Page

®Online Book Reader