Hiroshima_ The World's Bomb - Andrew J. Rotter [6]
ONE - The World’s Atom
'Never believe', wrote the British physicist Jacob Bronowski, ‘that the atom is a complex mystery—it is not. The atom is what we find when we look for the underlying architecture in nature, whose bricks are as few, as simple and as orderly as possible.’ Reassuring words, perhaps, to a beginning student of physics, and logical too, for humans naturally seek to reduce large and complex matters to their essences. But the presence of atoms was neither demonstrated nor universally assumed until relatively recently. It is commonly said that the ancient Greeks postulated the existence of the atom, and it is true that the word atomos is Greek for ‘indivisible’, a coinage made by the philosopher Democritus around 430 bce. Both Plato and Aristotle, however, disparaged the notion of the atom, Plato contending that the highest forms of human society, including truth and beauty, could not be explained with reference to unseen bits of apparently inert matter. The Platonic-Aristotelean view largely held the field for centuries. In 1704, Sir Isaac Newton wrote (in Optics): ‘It seems probable to me that God in the beginning formed Matter in solid, massy, hard, impenetrable moveable Particles,’ which made the case for something like atoms, however ‘massy’ they might prove. A century later, the English chemist John Dalton posited the existence of atoms as hard and round as billiard balls, though these were particular to chemical elements and not, as Democritus had claimed, all like each other in composition.1
1. Dissecting the atom
Undoing the atom was fundamentally the atomic inheritance of Ernest Rutherford, a New Zealander who came to study physics at Newton’s university, Cambridge, and its Cavendish laboratory, in 1895. ‘I was brought up to look at the atom as a nice hard fellow, red or gray in colour, according to taste,’ he would write. For a time, Rutherford found no cause to change his mind. He worked on radio waves at the Cavendish, then spent nine years at McGill University in Montreal, tracing atomic ‘emanations’ but not yet investigating the atomic structure itself. In the meantime, however, J. J. Thomson, one of Rutherford’s mentors, found in a closed glass tube evidence of particles with negative electrical charges that were themselves tinier than atoms; these would be called electrons, a name already long devised by the Irish physicist George Johnstone Stoney, who had posited though not demonstrated their existence. Using a similar tube, W C. Rontgen, working at the University of Wurzburg in Germany, produced an electrical discharge that yielded an odd glow. When he covered the tube with black paper and placed his hand between the tube and a screen, he could see faintly