Online Book Reader

Home Category

ON THE HEAVENS [8]

By Root 271 0
also that their places should be infinite in extent, so that the movements too of all these bodies would be infinite. But this is not possible, if we are to hold to the truth of our original presuppositions and to the view that neither that which moves downward, nor, by the same reasoning, that which moves upward, can prolong its movement to infinity. For it is true in regard to quality, quantity, and place alike that any process of change is impossible which can have no end. I mean that if it is impossible for a thing to have come to be white, or a cubit long, or in Egypt, it is also impossible for it to be in process of coming to be any of these. It is thus impossible for a thing to be moving to a place at which in its motion it can never by any possibility arrive. Again, suppose the body to exist in dispersion, it may be maintained none the less that the total of all these scattered particles, say, of fire, is infinite. But body we saw to be that which has extension every way. How can there be several dissimilar elements, each infinite? Each would have to be infinitely extended every way. It is no more conceivable, again, that the infinite should exist as a whole of similar parts. For, in the first place, there is no other (straight) movement beyond those mentioned: we must therefore give it one of them. And if so, we shall have to admit either infinite weight or infinite lightness. Nor, secondly, could the body whose movement is circular be infinite, since it is impossible for the infinite to move in a circle. This, indeed, would be as good as saying that the heavens are infinite, which we have shown to be impossible. Moreover, in general, it is impossible that the infinite should move at all. If it did, it would move either naturally or by constraint: and if by constraint, it possesses also a natural motion, that is to say, there is another place, infinite like itself, to which it will move. But that is impossible. That in general it is impossible for the infinite to be acted upon by the finite or to act upon it may be shown as follows. (1. The infinite cannot be acted upon by the finite.) Let A be an infinite, B a finite, C the time of a given movement produced by one in the other. Suppose, then, that A was heated, or impelled, or modified in any way, or caused to undergo any sort of movement whatever, by in the time C. Let D be less than B; and, assuming that a lesser agent moves a lesser patient in an equal time, call the quantity thus modified by D, E. Then, as D is to B, so is E to some finite quantum. We assume that the alteration of equal by equal takes equal time, and the alteration of less by less or of greater by greater takes the same time, if the quantity of the patient is such as to keep the proportion which obtains between the agents, greater and less. If so, no movement can be caused in the infinite by any finite agent in any time whatever. For a less agent will produce that movement in a less patient in an equal time, and the proportionate equivalent of that patient will be a finite quantity, since no proportion holds between finite and infinite. (2. The infinite cannot act upon the finite.) Nor, again, can the infinite produce a movement in the finite in any time whatever. Let A be an infinite, B a finite, C the time of action. In the time C, D will produce that motion in a patient less than B, say F. Then take E, bearing the same proportion to D as the whole BF bears to F. E will produce the motion in BF in the time C. Thus the finite and infinite effect the same alteration in equal times. But this is impossible; for the assumption is that the greater effects it in a shorter time. It will be the same with any time that can be taken, so that there will no time in which the infinite can effect this movement. And, as to infinite time, in that nothing can move another or be moved by it. For such time has no limit, while the action and reaction have. (3. There is no interaction between infinites.) Nor can infinite be acted upon in any way by infinite. Let A and B be infinites, CD being the
Return Main Page Previous Page Next Page

®Online Book Reader