Online Book Reader

Home Category

Principles of Human Knowledge [42]

By Root 317 0
each part thereof must be perceived. If, therefore, I cannot perceive innumerable parts in any finite extension that I consider, it is certain they are not contained in it; but, it is evident that I cannot distinguish innumerable parts in any particular line, surface, or solid, which I either perceive by sense, or figure to myself in my mind: wherefore I conclude they are not contained in it. Nothing can be plainer to me than that the extensions I have in view are no other than my own ideas; and it is no less plain that I cannot resolve any one of my ideas into an infinite number of other ideas, that is, that they are not infinitely divisible. If by finite extension be meant something distinct from a finite idea, I declare I do not know what that is, and so cannot affirm or deny anything of it. But if the terms "extension," "parts," &c., are taken in any sense conceivable, that is, for ideas, then to say a finite quantity or extension consists of parts infinite in number is so manifest a contradiction, that every one at first sight acknowledges it to be so; and it is impossible it should ever gain the assent of any reasonable creature who is not brought to it by gentle and slow degrees, as a converted Gentile to the belief of transubstantiation. Ancient and rooted prejudices do often pass into principles; and those propositions which once obtain the force and credit of a principle, are not only themselves, but likewise whatever is deducible from them, thought privileged from all examination. And there is no absurdity so gross, which, by this means, the mind of man may not be prepared to swallow.

125. He whose understanding is possessed with the doctrine of abstract general ideas may be persuaded that (whatever be thought of the ideas of sense) extension in abstract is infinitely divisible. And one who thinks the objects of sense exist without the mind will perhaps in virtue thereof be brought to admit that a line but an inch long may contain innumerable parts- really existing, though too small to be discerned. These errors are grafted as well in the minds of geometricians as of other men, and have a like influence on their reasonings; and it were no difficult thing to shew how the arguments from Geometry made use of to support the infinite divisibility of extension are bottomed on them. At present we shall only observe in general whence it is the mathematicians are all so fond and tenacious of that doctrine.

126. It hath been observed in another place that the theorems and demonstrations in Geometry are conversant about universal ideas (sect. 15, Introd.); where it is explained in what sense this ought to be understood, to wit, the particular lines and figures included in the diagram are supposed to stand for innumerable others of different sizes; or, in other words, the geometer considers them abstracting from their magnitude- which does not imply that he forms an abstract idea, but only that he cares not what the particular magnitude is, whether great or small, but looks on that as a thing different to the demonstration. Hence it follows that a line in the scheme but an inch long must be spoken of as though it contained ten thousand parts, since it is regarded not in itself, but as it is universal; and it is universal only in its signification, whereby it represents innumerable lines greater than itself, in which may be distinguished ten thousand parts or more, though there may not be above an inch in it. After this manner, the properties of the lines signified are (by a very usual figure) transferred to the sign, and thence, through mistake, though to appertain to it considered in its own nature.

127. Because there is no number of parts so great but it is possible there may be a line containing more, the inch-line is said to contain parts more than any assignable number; which is true, not of the inch taken absolutely, but only for the things signified by it. But men, not retaining that distinction in their thoughts, slide into a belief that the small particular line described on paper contains
Return Main Page Previous Page Next Page

®Online Book Reader