The Story of Stuff - Annie Leonard [22]
Water
The summer I worked in the North Cascades National Park taught me about more than trees. I also spent a lot of time around rivers. We waded—if you can call being in water up to your neck “wading”—in icy waters that had recently been glaciers to retrieve trash left by campers and branches that blocked river channels. Plunging into glacier melt to pick up an empty Coke can is a great way to solidify a commitment never to drop a piece of trash in a body of water, ever.
It was there I first saw the profound difference between a river at the base of a clear-cut and one below a healthy, intact forest. The rivers below a clear-cut were cloudy, full of muck and debris, with fewer fish, bugs, and life of any kind. When we took samples of the water, we learned that the rivers below the clear-cuts had a higher biological oxygen demand, or BOD, which is a measure of how much organic matter is in the water. A low BOD indicates healthy water, and a too high BOD means polluted water.
Now, in farming or in the produce aisle, the label “organic” is a plus. This is not always the case in the worlds of biology and chemistry, where “organic” doesn’t mean the absence of toxic pesticides. In biology, an organic substance is one that comes from living organisms. In chemistry, it is something that contains carbon among its elemental building blocks.
Organic material is part of nature, rivers included, and its presence is not by definition good or bad. As in many things, the dose makes the poison. Organic matter (like leaves or dead bugs) doesn’t become a problem in water unless it builds up faster than it can be decomposed. The tiny bacteria whose job it is to decompose all that organic stuff need oxygen; when their workload increases, their demand for oxygen outpaces the supply, leading to oxygen-deprived rivers, on their way to becoming dead ones.
Healthy forest floors are covered with organic matter known as “humus,” which is held in place by tree roots and shrubby plants. Humus decomposes just fine in the presence of bugs and oxygen, constantly replenishing the soil with its nutrients. In a clear-cut, the forests are wiped clear of tree roots and shrubs, leaving an exposed surface, so that come a rainstorm, all that nice rich soil rushes downhill into rivers and turns into a pollutant.
The rivers in the North Cascades feed multiple watersheds from which Washington State’s population draws water for drinking, washing, and irrigation. The water eventually makes its way to Puget Sound, where I dug clams and splashed in the waves as a kid. The health of those rivers impacts the health of bodies of water—as well as bodies of fish, birds, and people—hundreds of miles away.
Talk about being hitched to everything else in the universe. Water is the natural resource where we can most clearly see the interconnectedness of systems—as children we learn that the rain comes down, fills our groundwater reserves, rivers, and gutters, evaporates from lakes and oceans, and gets stored in clouds, only to reappear in the form of rain and snow. Water’s also not something only found out there in “the environment,” external to us: our own bodies are 50 to 65 percent water, 70 percent for babies.42
But somehow, as we grow into adulthood, we learn to think about water in a very disconnected way. Pat Costner, a retired Greenpeace scientist, expert in waste issues, and author of a book called We All Live Downstream: A Guide to Waste Treatment that Stops Water Pollution, believes that our water-based sewage systems do us a deep psychological disservice. From the age at which we get potty-trained, we begin to think of water as a waste receptacle