The Story of Stuff - Annie Leonard [6]
Fragmented Solutions
While the challenges are interconnected and system-wide, the responses are often partial, focused on just one area—like improving technologies, restricting population growth, or curbing the consumption of resources.
Proponents of techno-fixes, for example, believe that cleaner, greener, and more innovative technologies will make our industrial and economic activity so efficient with energy and other resources that our problems can be solved this way. They point out that there’s less and less environmental destruction per unit of activity (per dollar of gross domestic product or per ton of product made). They’re not wrong. Many technologies are getting more efficient. But that progress is canceled out by the fact that—at least until the economic crash of 2008—there was more absolute growth overall: more people extracting, using, and disposing of more Stuff. (Even the decline in production from 2008 to 2009 was relatively small, and if past trends are any guide, we will revert to growth soon enough.) So the overall adverse environmental impact is still increasing, regardless of more efficient technology.
The reason that green technologies will not save us is that they are only part of the picture. Our collective impact on the planet—how fast we reach the limits of the earth’s capacity to sustain us—results from a combination of how many of us there are, what kind of technologies we use, and how much we’re consuming. In technical terms, this is often represented by the I=PAT equation, which was conceived in the 1970s during debates between the camp that believed that technologies and consumption patterns were the main driver of environmental destruction and the opposing camp, which argued that increasing population was at fault. The I=PAT equation—in which I is impact, P is population, A is affluence (aka consumption), and T is the technologies used—recognizes the interplay between all these factors. The equation helps us see how these factors can interact; generally we can decrease our impact by reducing population and/or improving technologies. Generally, but not always: not if other variables cancel out the change. Fewer people consuming much more Stuff, for example, still increases impact. More people consuming less Stuff could decrease impact. There are many ways these variables can relate to one another.
Of course total population growth is part of the problem: all you need to do is see those hockey-stick-like graphs on page xv to know that one of the big reasons that exponentially more of everything (trees, minerals, fresh water, fisheries, etc.) has been used up in the last fifty years is because there are exponentially more of us. It took us two hundred thousand years (until the early 1800s) to reach 1 billion people; then a little over a century (1960) to reach 3 billion; and we’ve more than doubled since then, with our current 6.7 billion and counting.14
Yet historically, interventions aimed at stabilizing global population have usually been driven by those in the overconsuming regions of the world and have often ignored the fact of vastly unequal consumption patterns. Often places with the most rapidly expanding populations are using very few