Volcanic Islands [71]
of eruption to the neighbouring continents--a relation, which Von Buch considers, characteristic of his great volcanic chains.
In volcanic archipelagoes, the orifices are seldom in activity on more than one island at a time; and the greater eruptions usually recur only after long intervals. Observing the number of craters, that are usually found on each island of a group, and the vast amount of matter which has been erupted from them, one is led to attribute a high antiquity even to those groups, which appear, like the Galapagos, to be of comparatively recent origin. This conclusion accords with the prodigious amount of degradation, by the slow action of the sea, which their originally sloping coasts must have suffered, when they are worn back, as is so often the case, into grand precipices. We ought not, however, to suppose, in hardly any instance, that the whole body of matter, forming a volcanic island, has been erupted at the level, on which it now stands: the number of dikes, which seem invariably to intersect the interior parts of every volcano, show, on the principles explained by M. Elie de Beaumont, that the whole mass has been uplifted and fissured. A connection, moreover, between volcanic eruptions and contemporaneous elevations in mass has, I think, been shown to exist in my work on Coral-Reefs, both from the frequent presence of upraised organic remains, and from the structure of the accompanying coral-reefs. (A similar conclusion is forced on us, by the phenomena, which accompanied the earthquake of 1835, at Concepcion, and which are detailed in my paper (volume 5 page 601) in the "Geological Transactions.") Finally, I may remark, that in the same Archipelago, eruptions have taken place within the historical period on more than one of the parallel lines of fissure: thus, at the Galapagos Archipelago, eruptions have taken place from a vent on Narborough Island, and from one on Albemarle Island, which vents do not fall on the same line; at the Canary Islands, eruptions have taken place in Teneriffe and Lanzarote; and at the Azores, on the three parallel lines of Pico, St. Jorge, and Terceira. Believing that a mountain-axis differs essentially from a volcano, only in plutonic rocks having been injected, instead of volcanic matter having been ejected, this appears to me an interesting circumstance; for we may infer from it as probable, that in the elevation of a mountain-chain, two or more of the parallel lines forming it may be upraised and injected within the same geological period.
CHAPTER VII.--AUSTRALIA; NEW ZEALAND; CAPE OF GOOD HOPE.
New South Wales. Sandstone formation. Embedded pseudo-fragments of shale. Stratification. Current-cleavage. Great valleys. Van Diemen's Land. Palaeozoic formation. Newer formation with volcanic rocks. Travertin with leaves of extinct plants. Elevation of the land. New Zealand. King George's Sound. Superficial ferruginous beds. Superficial calcareous deposits, with casts of branches. Their origin from drifted particles of shells and corals. Their extent. Cape of Good Hope. Junction of the granite and clay-slate. Sandstone formation.
The "Beagle," in her homeward voyage, touched at New Zealand, Australia, Van Diemen's Land, and the Cape of Good Hope. In order to confine the Third Part of these Geological Observations to South America, I will here briefly describe all that I observed at these places worthy of the attention of geologists.
NEW SOUTH WALES.
My opportunities of observation consisted of a ride of ninety geographical miles to Bathurst, in a W.N.W. direction from Sydney. The first thirty miles from the coast passes over a sandstone country, broken up in many places by trap-rocks, and separated by a bold escarpment overhanging the river Nepean, from the great sandstone platform of the Blue Mountains. This upper platform is 1,000 feet high at the edge of the escarpment, and rises in a distance of twenty-five miles to between three and four thousand feet above the level of the sea. At this distance the road descends to a country rather less elevated,
In volcanic archipelagoes, the orifices are seldom in activity on more than one island at a time; and the greater eruptions usually recur only after long intervals. Observing the number of craters, that are usually found on each island of a group, and the vast amount of matter which has been erupted from them, one is led to attribute a high antiquity even to those groups, which appear, like the Galapagos, to be of comparatively recent origin. This conclusion accords with the prodigious amount of degradation, by the slow action of the sea, which their originally sloping coasts must have suffered, when they are worn back, as is so often the case, into grand precipices. We ought not, however, to suppose, in hardly any instance, that the whole body of matter, forming a volcanic island, has been erupted at the level, on which it now stands: the number of dikes, which seem invariably to intersect the interior parts of every volcano, show, on the principles explained by M. Elie de Beaumont, that the whole mass has been uplifted and fissured. A connection, moreover, between volcanic eruptions and contemporaneous elevations in mass has, I think, been shown to exist in my work on Coral-Reefs, both from the frequent presence of upraised organic remains, and from the structure of the accompanying coral-reefs. (A similar conclusion is forced on us, by the phenomena, which accompanied the earthquake of 1835, at Concepcion, and which are detailed in my paper (volume 5 page 601) in the "Geological Transactions.") Finally, I may remark, that in the same Archipelago, eruptions have taken place within the historical period on more than one of the parallel lines of fissure: thus, at the Galapagos Archipelago, eruptions have taken place from a vent on Narborough Island, and from one on Albemarle Island, which vents do not fall on the same line; at the Canary Islands, eruptions have taken place in Teneriffe and Lanzarote; and at the Azores, on the three parallel lines of Pico, St. Jorge, and Terceira. Believing that a mountain-axis differs essentially from a volcano, only in plutonic rocks having been injected, instead of volcanic matter having been ejected, this appears to me an interesting circumstance; for we may infer from it as probable, that in the elevation of a mountain-chain, two or more of the parallel lines forming it may be upraised and injected within the same geological period.
CHAPTER VII.--AUSTRALIA; NEW ZEALAND; CAPE OF GOOD HOPE.
New South Wales. Sandstone formation. Embedded pseudo-fragments of shale. Stratification. Current-cleavage. Great valleys. Van Diemen's Land. Palaeozoic formation. Newer formation with volcanic rocks. Travertin with leaves of extinct plants. Elevation of the land. New Zealand. King George's Sound. Superficial ferruginous beds. Superficial calcareous deposits, with casts of branches. Their origin from drifted particles of shells and corals. Their extent. Cape of Good Hope. Junction of the granite and clay-slate. Sandstone formation.
The "Beagle," in her homeward voyage, touched at New Zealand, Australia, Van Diemen's Land, and the Cape of Good Hope. In order to confine the Third Part of these Geological Observations to South America, I will here briefly describe all that I observed at these places worthy of the attention of geologists.
NEW SOUTH WALES.
My opportunities of observation consisted of a ride of ninety geographical miles to Bathurst, in a W.N.W. direction from Sydney. The first thirty miles from the coast passes over a sandstone country, broken up in many places by trap-rocks, and separated by a bold escarpment overhanging the river Nepean, from the great sandstone platform of the Blue Mountains. This upper platform is 1,000 feet high at the edge of the escarpment, and rises in a distance of twenty-five miles to between three and four thousand feet above the level of the sea. At this distance the road descends to a country rather less elevated,