The Story of Stuff - Annie Leonard [28]
In addition to market-based and technological solutions—which are ready to be implemented as soon as we decide to do so—we also need changes in our cultural approach to water that would prioritize sustainable usage and access for all. Like the oxygen we breathe, water is absolutely essential to survival, and there’s no substitute waiting in the wings.
Rocks
The most elusive ingredients needed to make our Stuff are underground. Metals, gems, and minerals—and their organic cousins petroleum and coal—are basically nonrenewable, unlike trees (renewable, as long as our rate of replanting is faster than our rate of use) or water (replenishable, which means a resource at risk of being depleted, but which can be restored in a healthy ecosystem over time). They’re also harder to reach. That’s where mining comes in.
You’re unlikely to hear someone wax sentimental about rocks. They’re not grand, awe-inspiring living creatures like trees or a serene, healing, cleansing substance like water. You don’t hear appeals from nonprofits to save the poor silver or uranium from being removed from its native habitat. You are likely to run in to people who are emotionally attached to their rock-based Stuff, though. Threaten someone’s wedding ring, cell phone, and car, and you’re likely to wind up underground yourself.
So what’s the big deal about removing these inanimate and uncharismatic resources from the earth in the name of our most cherished possessions? Well, for starters, there’s the issue of availability of these materials for future generations. What we use up today isn’t going to grow back. The fact that our primary economic model is based on using up nonrenewable resources, like minerals, is one of the main blind spots of the GDP as a viable measure of progress.
And then there’s the whole story of how we get at those materials— mining. No matter how you slice it, mining is a serious drag—for people and the planet. Open-pit, strip, shaft, above the surface, below it, it doesn’t matter: these are energy-and water-intensive, waste-spewing, often poisonous, and all-around dirty processes. Communities are evicted, workers’ rights are violated, and the toxic by-products endanger everyone’s health, all in the name of mining. And the trauma doesn’t stop when a mine gets shut down—it continues for years afterward.
Underground, or subsurface, mining involves tunnels dug deep down into the earth. Although this is probably the image—along with headlamps and canaries—that most people have in their heads when they think of mining, most mining today occurs in gigantic open-air pits. In the United States, open-pit mining provides the bulk of the minerals extracted; globally, two-thirds of all metals are from open pits.70 Diamonds, iron, copper, gold, and coal are all commonly extracted from open pits, which can be huge. The Bingham Canyon copper mine in Utah, for instance, covers about 3 square miles (7.7 square kilometers) and the Chuquicamata copper mine in northern Chile covers about 4.5 square miles (12 square kilometers).71 There’s also mountaintop removal, usually used to get at deposits of coal found deep inside mountains (see the box on coal on page 35). Particularly in developing countries there are also still small-scale “artisanal” operations that employ workers in mining accessible surface deposits using their hands and basic tools.
Creating an open pit means chopping down trees (more trees!) and clearing off the land’s inhabitants, whether they walk on four or two legs. A report on the mining industry in India compared the mineral and forest maps, only to find that the highest concentrations of coal, bauxite (used for aluminum), and iron ore are all located in forest areas that are home to most of the country’s biodiversity and indigenous people as well.72
And the living things atop a mine only make up the first layer of what gets scraped off. All the stone and soil covering up the valuable ores—what the mining industry terms “overburden”—also